/drivers/net/bonding/bond_alb.c
C | 1685 lines | 1113 code | 283 blank | 289 comment | 217 complexity | e0ee98498a9bf18729ed58a78de771fc MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
1/*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/skbuff.h>
26#include <linux/netdevice.h>
27#include <linux/etherdevice.h>
28#include <linux/pkt_sched.h>
29#include <linux/spinlock.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/ip.h>
33#include <linux/ipv6.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/if_bonding.h>
37#include <linux/if_vlan.h>
38#include <linux/in.h>
39#include <net/ipx.h>
40#include <net/arp.h>
41#include <net/ipv6.h>
42#include <asm/byteorder.h>
43#include "bonding.h"
44#include "bond_alb.h"
45
46
47
48#ifndef __long_aligned
49#define __long_aligned __attribute__((aligned((sizeof(long)))))
50#endif
51static const u8 mac_bcast[ETH_ALEN] __long_aligned = {
52 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
53};
54static const u8 mac_v6_allmcast[ETH_ALEN] __long_aligned = {
55 0x33, 0x33, 0x00, 0x00, 0x00, 0x01
56};
57static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
58
59#pragma pack(1)
60struct learning_pkt {
61 u8 mac_dst[ETH_ALEN];
62 u8 mac_src[ETH_ALEN];
63 __be16 type;
64 u8 padding[ETH_ZLEN - ETH_HLEN];
65};
66
67struct arp_pkt {
68 __be16 hw_addr_space;
69 __be16 prot_addr_space;
70 u8 hw_addr_len;
71 u8 prot_addr_len;
72 __be16 op_code;
73 u8 mac_src[ETH_ALEN]; /* sender hardware address */
74 __be32 ip_src; /* sender IP address */
75 u8 mac_dst[ETH_ALEN]; /* target hardware address */
76 __be32 ip_dst; /* target IP address */
77};
78#pragma pack()
79
80static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
81{
82 return (struct arp_pkt *)skb_network_header(skb);
83}
84
85/* Forward declaration */
86static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
87
88static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
89{
90 int i;
91 u8 hash = 0;
92
93 for (i = 0; i < hash_size; i++) {
94 hash ^= hash_start[i];
95 }
96
97 return hash;
98}
99
100/*********************** tlb specific functions ***************************/
101
102static inline void _lock_tx_hashtbl(struct bonding *bond)
103{
104 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
105}
106
107static inline void _unlock_tx_hashtbl(struct bonding *bond)
108{
109 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
110}
111
112/* Caller must hold tx_hashtbl lock */
113static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
114{
115 if (save_load) {
116 entry->load_history = 1 + entry->tx_bytes /
117 BOND_TLB_REBALANCE_INTERVAL;
118 entry->tx_bytes = 0;
119 }
120
121 entry->tx_slave = NULL;
122 entry->next = TLB_NULL_INDEX;
123 entry->prev = TLB_NULL_INDEX;
124}
125
126static inline void tlb_init_slave(struct slave *slave)
127{
128 SLAVE_TLB_INFO(slave).load = 0;
129 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
130}
131
132/* Caller must hold bond lock for read */
133static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
134{
135 struct tlb_client_info *tx_hash_table;
136 u32 index;
137
138 _lock_tx_hashtbl(bond);
139
140 /* clear slave from tx_hashtbl */
141 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
142
143 /* skip this if we've already freed the tx hash table */
144 if (tx_hash_table) {
145 index = SLAVE_TLB_INFO(slave).head;
146 while (index != TLB_NULL_INDEX) {
147 u32 next_index = tx_hash_table[index].next;
148 tlb_init_table_entry(&tx_hash_table[index], save_load);
149 index = next_index;
150 }
151 }
152
153 tlb_init_slave(slave);
154
155 _unlock_tx_hashtbl(bond);
156}
157
158/* Must be called before starting the monitor timer */
159static int tlb_initialize(struct bonding *bond)
160{
161 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
162 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
163 struct tlb_client_info *new_hashtbl;
164 int i;
165
166 new_hashtbl = kzalloc(size, GFP_KERNEL);
167 if (!new_hashtbl) {
168 pr_err("%s: Error: Failed to allocate TLB hash table\n",
169 bond->dev->name);
170 return -1;
171 }
172 _lock_tx_hashtbl(bond);
173
174 bond_info->tx_hashtbl = new_hashtbl;
175
176 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
177 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 0);
178 }
179
180 _unlock_tx_hashtbl(bond);
181
182 return 0;
183}
184
185/* Must be called only after all slaves have been released */
186static void tlb_deinitialize(struct bonding *bond)
187{
188 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
189
190 _lock_tx_hashtbl(bond);
191
192 kfree(bond_info->tx_hashtbl);
193 bond_info->tx_hashtbl = NULL;
194
195 _unlock_tx_hashtbl(bond);
196}
197
198static long long compute_gap(struct slave *slave)
199{
200 return (s64) (slave->speed << 20) - /* Convert to Megabit per sec */
201 (s64) (SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
202}
203
204/* Caller must hold bond lock for read */
205static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
206{
207 struct slave *slave, *least_loaded;
208 long long max_gap;
209 int i;
210
211 least_loaded = NULL;
212 max_gap = LLONG_MIN;
213
214 /* Find the slave with the largest gap */
215 bond_for_each_slave(bond, slave, i) {
216 if (SLAVE_IS_OK(slave)) {
217 long long gap = compute_gap(slave);
218
219 if (max_gap < gap) {
220 least_loaded = slave;
221 max_gap = gap;
222 }
223 }
224 }
225
226 return least_loaded;
227}
228
229/* Caller must hold bond lock for read */
230static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
231{
232 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
233 struct tlb_client_info *hash_table;
234 struct slave *assigned_slave;
235
236 _lock_tx_hashtbl(bond);
237
238 hash_table = bond_info->tx_hashtbl;
239 assigned_slave = hash_table[hash_index].tx_slave;
240 if (!assigned_slave) {
241 assigned_slave = tlb_get_least_loaded_slave(bond);
242
243 if (assigned_slave) {
244 struct tlb_slave_info *slave_info =
245 &(SLAVE_TLB_INFO(assigned_slave));
246 u32 next_index = slave_info->head;
247
248 hash_table[hash_index].tx_slave = assigned_slave;
249 hash_table[hash_index].next = next_index;
250 hash_table[hash_index].prev = TLB_NULL_INDEX;
251
252 if (next_index != TLB_NULL_INDEX) {
253 hash_table[next_index].prev = hash_index;
254 }
255
256 slave_info->head = hash_index;
257 slave_info->load +=
258 hash_table[hash_index].load_history;
259 }
260 }
261
262 if (assigned_slave) {
263 hash_table[hash_index].tx_bytes += skb_len;
264 }
265
266 _unlock_tx_hashtbl(bond);
267
268 return assigned_slave;
269}
270
271/*********************** rlb specific functions ***************************/
272static inline void _lock_rx_hashtbl(struct bonding *bond)
273{
274 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
275}
276
277static inline void _unlock_rx_hashtbl(struct bonding *bond)
278{
279 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
280}
281
282/* when an ARP REPLY is received from a client update its info
283 * in the rx_hashtbl
284 */
285static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
286{
287 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
288 struct rlb_client_info *client_info;
289 u32 hash_index;
290
291 _lock_rx_hashtbl(bond);
292
293 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
294 client_info = &(bond_info->rx_hashtbl[hash_index]);
295
296 if ((client_info->assigned) &&
297 (client_info->ip_src == arp->ip_dst) &&
298 (client_info->ip_dst == arp->ip_src) &&
299 (compare_ether_addr_64bits(client_info->mac_dst, arp->mac_src))) {
300 /* update the clients MAC address */
301 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
302 client_info->ntt = 1;
303 bond_info->rx_ntt = 1;
304 }
305
306 _unlock_rx_hashtbl(bond);
307}
308
309static void rlb_arp_recv(struct sk_buff *skb, struct bonding *bond,
310 struct slave *slave)
311{
312 struct arp_pkt *arp;
313
314 if (skb->protocol != cpu_to_be16(ETH_P_ARP))
315 return;
316
317 arp = (struct arp_pkt *) skb->data;
318 if (!arp) {
319 pr_debug("Packet has no ARP data\n");
320 return;
321 }
322
323 if (!pskb_may_pull(skb, arp_hdr_len(bond->dev)))
324 return;
325
326 if (skb->len < sizeof(struct arp_pkt)) {
327 pr_debug("Packet is too small to be an ARP\n");
328 return;
329 }
330
331 if (arp->op_code == htons(ARPOP_REPLY)) {
332 /* update rx hash table for this ARP */
333 rlb_update_entry_from_arp(bond, arp);
334 pr_debug("Server received an ARP Reply from client\n");
335 }
336}
337
338/* Caller must hold bond lock for read */
339static struct slave *rlb_next_rx_slave(struct bonding *bond)
340{
341 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
342 struct slave *rx_slave, *slave, *start_at;
343 int i = 0;
344
345 if (bond_info->next_rx_slave) {
346 start_at = bond_info->next_rx_slave;
347 } else {
348 start_at = bond->first_slave;
349 }
350
351 rx_slave = NULL;
352
353 bond_for_each_slave_from(bond, slave, i, start_at) {
354 if (SLAVE_IS_OK(slave)) {
355 if (!rx_slave) {
356 rx_slave = slave;
357 } else if (slave->speed > rx_slave->speed) {
358 rx_slave = slave;
359 }
360 }
361 }
362
363 if (rx_slave) {
364 bond_info->next_rx_slave = rx_slave->next;
365 }
366
367 return rx_slave;
368}
369
370/* teach the switch the mac of a disabled slave
371 * on the primary for fault tolerance
372 *
373 * Caller must hold bond->curr_slave_lock for write or bond lock for write
374 */
375static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
376{
377 if (!bond->curr_active_slave) {
378 return;
379 }
380
381 if (!bond->alb_info.primary_is_promisc) {
382 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
383 bond->alb_info.primary_is_promisc = 1;
384 else
385 bond->alb_info.primary_is_promisc = 0;
386 }
387
388 bond->alb_info.rlb_promisc_timeout_counter = 0;
389
390 alb_send_learning_packets(bond->curr_active_slave, addr);
391}
392
393/* slave being removed should not be active at this point
394 *
395 * Caller must hold bond lock for read
396 */
397static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
398{
399 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
400 struct rlb_client_info *rx_hash_table;
401 u32 index, next_index;
402
403 /* clear slave from rx_hashtbl */
404 _lock_rx_hashtbl(bond);
405
406 rx_hash_table = bond_info->rx_hashtbl;
407 index = bond_info->rx_hashtbl_head;
408 for (; index != RLB_NULL_INDEX; index = next_index) {
409 next_index = rx_hash_table[index].next;
410 if (rx_hash_table[index].slave == slave) {
411 struct slave *assigned_slave = rlb_next_rx_slave(bond);
412
413 if (assigned_slave) {
414 rx_hash_table[index].slave = assigned_slave;
415 if (compare_ether_addr_64bits(rx_hash_table[index].mac_dst,
416 mac_bcast)) {
417 bond_info->rx_hashtbl[index].ntt = 1;
418 bond_info->rx_ntt = 1;
419 /* A slave has been removed from the
420 * table because it is either disabled
421 * or being released. We must retry the
422 * update to avoid clients from not
423 * being updated & disconnecting when
424 * there is stress
425 */
426 bond_info->rlb_update_retry_counter =
427 RLB_UPDATE_RETRY;
428 }
429 } else { /* there is no active slave */
430 rx_hash_table[index].slave = NULL;
431 }
432 }
433 }
434
435 _unlock_rx_hashtbl(bond);
436
437 write_lock_bh(&bond->curr_slave_lock);
438
439 if (slave != bond->curr_active_slave) {
440 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
441 }
442
443 write_unlock_bh(&bond->curr_slave_lock);
444}
445
446static void rlb_update_client(struct rlb_client_info *client_info)
447{
448 int i;
449
450 if (!client_info->slave) {
451 return;
452 }
453
454 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
455 struct sk_buff *skb;
456
457 skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
458 client_info->ip_dst,
459 client_info->slave->dev,
460 client_info->ip_src,
461 client_info->mac_dst,
462 client_info->slave->dev->dev_addr,
463 client_info->mac_dst);
464 if (!skb) {
465 pr_err("%s: Error: failed to create an ARP packet\n",
466 client_info->slave->dev->master->name);
467 continue;
468 }
469
470 skb->dev = client_info->slave->dev;
471
472 if (client_info->tag) {
473 skb = vlan_put_tag(skb, client_info->vlan_id);
474 if (!skb) {
475 pr_err("%s: Error: failed to insert VLAN tag\n",
476 client_info->slave->dev->master->name);
477 continue;
478 }
479 }
480
481 arp_xmit(skb);
482 }
483}
484
485/* sends ARP REPLIES that update the clients that need updating */
486static void rlb_update_rx_clients(struct bonding *bond)
487{
488 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
489 struct rlb_client_info *client_info;
490 u32 hash_index;
491
492 _lock_rx_hashtbl(bond);
493
494 hash_index = bond_info->rx_hashtbl_head;
495 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
496 client_info = &(bond_info->rx_hashtbl[hash_index]);
497 if (client_info->ntt) {
498 rlb_update_client(client_info);
499 if (bond_info->rlb_update_retry_counter == 0) {
500 client_info->ntt = 0;
501 }
502 }
503 }
504
505 /* do not update the entries again until this counter is zero so that
506 * not to confuse the clients.
507 */
508 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
509
510 _unlock_rx_hashtbl(bond);
511}
512
513/* The slave was assigned a new mac address - update the clients */
514static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
515{
516 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
517 struct rlb_client_info *client_info;
518 int ntt = 0;
519 u32 hash_index;
520
521 _lock_rx_hashtbl(bond);
522
523 hash_index = bond_info->rx_hashtbl_head;
524 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
525 client_info = &(bond_info->rx_hashtbl[hash_index]);
526
527 if ((client_info->slave == slave) &&
528 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) {
529 client_info->ntt = 1;
530 ntt = 1;
531 }
532 }
533
534 // update the team's flag only after the whole iteration
535 if (ntt) {
536 bond_info->rx_ntt = 1;
537 //fasten the change
538 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
539 }
540
541 _unlock_rx_hashtbl(bond);
542}
543
544/* mark all clients using src_ip to be updated */
545static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
546{
547 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
548 struct rlb_client_info *client_info;
549 u32 hash_index;
550
551 _lock_rx_hashtbl(bond);
552
553 hash_index = bond_info->rx_hashtbl_head;
554 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
555 client_info = &(bond_info->rx_hashtbl[hash_index]);
556
557 if (!client_info->slave) {
558 pr_err("%s: Error: found a client with no channel in the client's hash table\n",
559 bond->dev->name);
560 continue;
561 }
562 /*update all clients using this src_ip, that are not assigned
563 * to the team's address (curr_active_slave) and have a known
564 * unicast mac address.
565 */
566 if ((client_info->ip_src == src_ip) &&
567 compare_ether_addr_64bits(client_info->slave->dev->dev_addr,
568 bond->dev->dev_addr) &&
569 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) {
570 client_info->ntt = 1;
571 bond_info->rx_ntt = 1;
572 }
573 }
574
575 _unlock_rx_hashtbl(bond);
576}
577
578/* Caller must hold both bond and ptr locks for read */
579static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
580{
581 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
582 struct arp_pkt *arp = arp_pkt(skb);
583 struct slave *assigned_slave;
584 struct rlb_client_info *client_info;
585 u32 hash_index = 0;
586
587 _lock_rx_hashtbl(bond);
588
589 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_dst));
590 client_info = &(bond_info->rx_hashtbl[hash_index]);
591
592 if (client_info->assigned) {
593 if ((client_info->ip_src == arp->ip_src) &&
594 (client_info->ip_dst == arp->ip_dst)) {
595 /* the entry is already assigned to this client */
596 if (compare_ether_addr_64bits(arp->mac_dst, mac_bcast)) {
597 /* update mac address from arp */
598 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
599 }
600
601 assigned_slave = client_info->slave;
602 if (assigned_slave) {
603 _unlock_rx_hashtbl(bond);
604 return assigned_slave;
605 }
606 } else {
607 /* the entry is already assigned to some other client,
608 * move the old client to primary (curr_active_slave) so
609 * that the new client can be assigned to this entry.
610 */
611 if (bond->curr_active_slave &&
612 client_info->slave != bond->curr_active_slave) {
613 client_info->slave = bond->curr_active_slave;
614 rlb_update_client(client_info);
615 }
616 }
617 }
618 /* assign a new slave */
619 assigned_slave = rlb_next_rx_slave(bond);
620
621 if (assigned_slave) {
622 client_info->ip_src = arp->ip_src;
623 client_info->ip_dst = arp->ip_dst;
624 /* arp->mac_dst is broadcast for arp reqeusts.
625 * will be updated with clients actual unicast mac address
626 * upon receiving an arp reply.
627 */
628 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
629 client_info->slave = assigned_slave;
630
631 if (compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) {
632 client_info->ntt = 1;
633 bond->alb_info.rx_ntt = 1;
634 } else {
635 client_info->ntt = 0;
636 }
637
638 if (bond->vlgrp) {
639 if (!vlan_get_tag(skb, &client_info->vlan_id))
640 client_info->tag = 1;
641 }
642
643 if (!client_info->assigned) {
644 u32 prev_tbl_head = bond_info->rx_hashtbl_head;
645 bond_info->rx_hashtbl_head = hash_index;
646 client_info->next = prev_tbl_head;
647 if (prev_tbl_head != RLB_NULL_INDEX) {
648 bond_info->rx_hashtbl[prev_tbl_head].prev =
649 hash_index;
650 }
651 client_info->assigned = 1;
652 }
653 }
654
655 _unlock_rx_hashtbl(bond);
656
657 return assigned_slave;
658}
659
660/* chooses (and returns) transmit channel for arp reply
661 * does not choose channel for other arp types since they are
662 * sent on the curr_active_slave
663 */
664static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
665{
666 struct arp_pkt *arp = arp_pkt(skb);
667 struct slave *tx_slave = NULL;
668
669 if (arp->op_code == htons(ARPOP_REPLY)) {
670 /* the arp must be sent on the selected
671 * rx channel
672 */
673 tx_slave = rlb_choose_channel(skb, bond);
674 if (tx_slave) {
675 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
676 }
677 pr_debug("Server sent ARP Reply packet\n");
678 } else if (arp->op_code == htons(ARPOP_REQUEST)) {
679 /* Create an entry in the rx_hashtbl for this client as a
680 * place holder.
681 * When the arp reply is received the entry will be updated
682 * with the correct unicast address of the client.
683 */
684 rlb_choose_channel(skb, bond);
685
686 /* The ARP reply packets must be delayed so that
687 * they can cancel out the influence of the ARP request.
688 */
689 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
690
691 /* arp requests are broadcast and are sent on the primary
692 * the arp request will collapse all clients on the subnet to
693 * the primary slave. We must register these clients to be
694 * updated with their assigned mac.
695 */
696 rlb_req_update_subnet_clients(bond, arp->ip_src);
697 pr_debug("Server sent ARP Request packet\n");
698 }
699
700 return tx_slave;
701}
702
703/* Caller must hold bond lock for read */
704static void rlb_rebalance(struct bonding *bond)
705{
706 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
707 struct slave *assigned_slave;
708 struct rlb_client_info *client_info;
709 int ntt;
710 u32 hash_index;
711
712 _lock_rx_hashtbl(bond);
713
714 ntt = 0;
715 hash_index = bond_info->rx_hashtbl_head;
716 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
717 client_info = &(bond_info->rx_hashtbl[hash_index]);
718 assigned_slave = rlb_next_rx_slave(bond);
719 if (assigned_slave && (client_info->slave != assigned_slave)) {
720 client_info->slave = assigned_slave;
721 client_info->ntt = 1;
722 ntt = 1;
723 }
724 }
725
726 /* update the team's flag only after the whole iteration */
727 if (ntt) {
728 bond_info->rx_ntt = 1;
729 }
730 _unlock_rx_hashtbl(bond);
731}
732
733/* Caller must hold rx_hashtbl lock */
734static void rlb_init_table_entry(struct rlb_client_info *entry)
735{
736 memset(entry, 0, sizeof(struct rlb_client_info));
737 entry->next = RLB_NULL_INDEX;
738 entry->prev = RLB_NULL_INDEX;
739}
740
741static int rlb_initialize(struct bonding *bond)
742{
743 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
744 struct rlb_client_info *new_hashtbl;
745 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
746 int i;
747
748 new_hashtbl = kmalloc(size, GFP_KERNEL);
749 if (!new_hashtbl) {
750 pr_err("%s: Error: Failed to allocate RLB hash table\n",
751 bond->dev->name);
752 return -1;
753 }
754 _lock_rx_hashtbl(bond);
755
756 bond_info->rx_hashtbl = new_hashtbl;
757
758 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
759
760 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
761 rlb_init_table_entry(bond_info->rx_hashtbl + i);
762 }
763
764 _unlock_rx_hashtbl(bond);
765
766 /* register to receive ARPs */
767 bond->recv_probe = rlb_arp_recv;
768
769 return 0;
770}
771
772static void rlb_deinitialize(struct bonding *bond)
773{
774 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
775
776 _lock_rx_hashtbl(bond);
777
778 kfree(bond_info->rx_hashtbl);
779 bond_info->rx_hashtbl = NULL;
780 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
781
782 _unlock_rx_hashtbl(bond);
783}
784
785static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
786{
787 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
788 u32 curr_index;
789
790 _lock_rx_hashtbl(bond);
791
792 curr_index = bond_info->rx_hashtbl_head;
793 while (curr_index != RLB_NULL_INDEX) {
794 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
795 u32 next_index = bond_info->rx_hashtbl[curr_index].next;
796 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
797
798 if (curr->tag && (curr->vlan_id == vlan_id)) {
799 if (curr_index == bond_info->rx_hashtbl_head) {
800 bond_info->rx_hashtbl_head = next_index;
801 }
802 if (prev_index != RLB_NULL_INDEX) {
803 bond_info->rx_hashtbl[prev_index].next = next_index;
804 }
805 if (next_index != RLB_NULL_INDEX) {
806 bond_info->rx_hashtbl[next_index].prev = prev_index;
807 }
808
809 rlb_init_table_entry(curr);
810 }
811
812 curr_index = next_index;
813 }
814
815 _unlock_rx_hashtbl(bond);
816}
817
818/*********************** tlb/rlb shared functions *********************/
819
820static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
821{
822 struct bonding *bond = bond_get_bond_by_slave(slave);
823 struct learning_pkt pkt;
824 int size = sizeof(struct learning_pkt);
825 int i;
826
827 memset(&pkt, 0, size);
828 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
829 memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
830 pkt.type = cpu_to_be16(ETH_P_LOOP);
831
832 for (i = 0; i < MAX_LP_BURST; i++) {
833 struct sk_buff *skb;
834 char *data;
835
836 skb = dev_alloc_skb(size);
837 if (!skb) {
838 return;
839 }
840
841 data = skb_put(skb, size);
842 memcpy(data, &pkt, size);
843
844 skb_reset_mac_header(skb);
845 skb->network_header = skb->mac_header + ETH_HLEN;
846 skb->protocol = pkt.type;
847 skb->priority = TC_PRIO_CONTROL;
848 skb->dev = slave->dev;
849
850 if (bond->vlgrp) {
851 struct vlan_entry *vlan;
852
853 vlan = bond_next_vlan(bond,
854 bond->alb_info.current_alb_vlan);
855
856 bond->alb_info.current_alb_vlan = vlan;
857 if (!vlan) {
858 kfree_skb(skb);
859 continue;
860 }
861
862 skb = vlan_put_tag(skb, vlan->vlan_id);
863 if (!skb) {
864 pr_err("%s: Error: failed to insert VLAN tag\n",
865 bond->dev->name);
866 continue;
867 }
868 }
869
870 dev_queue_xmit(skb);
871 }
872}
873
874static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[])
875{
876 struct net_device *dev = slave->dev;
877 struct sockaddr s_addr;
878
879 if (slave->bond->params.mode == BOND_MODE_TLB) {
880 memcpy(dev->dev_addr, addr, dev->addr_len);
881 return 0;
882 }
883
884 /* for rlb each slave must have a unique hw mac addresses so that */
885 /* each slave will receive packets destined to a different mac */
886 memcpy(s_addr.sa_data, addr, dev->addr_len);
887 s_addr.sa_family = dev->type;
888 if (dev_set_mac_address(dev, &s_addr)) {
889 pr_err("%s: Error: dev_set_mac_address of dev %s failed!\n"
890 "ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n",
891 dev->master->name, dev->name);
892 return -EOPNOTSUPP;
893 }
894 return 0;
895}
896
897/*
898 * Swap MAC addresses between two slaves.
899 *
900 * Called with RTNL held, and no other locks.
901 *
902 */
903
904static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
905{
906 u8 tmp_mac_addr[ETH_ALEN];
907
908 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
909 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr);
910 alb_set_slave_mac_addr(slave2, tmp_mac_addr);
911
912}
913
914/*
915 * Send learning packets after MAC address swap.
916 *
917 * Called with RTNL and no other locks
918 */
919static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
920 struct slave *slave2)
921{
922 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
923 struct slave *disabled_slave = NULL;
924
925 ASSERT_RTNL();
926
927 /* fasten the change in the switch */
928 if (SLAVE_IS_OK(slave1)) {
929 alb_send_learning_packets(slave1, slave1->dev->dev_addr);
930 if (bond->alb_info.rlb_enabled) {
931 /* inform the clients that the mac address
932 * has changed
933 */
934 rlb_req_update_slave_clients(bond, slave1);
935 }
936 } else {
937 disabled_slave = slave1;
938 }
939
940 if (SLAVE_IS_OK(slave2)) {
941 alb_send_learning_packets(slave2, slave2->dev->dev_addr);
942 if (bond->alb_info.rlb_enabled) {
943 /* inform the clients that the mac address
944 * has changed
945 */
946 rlb_req_update_slave_clients(bond, slave2);
947 }
948 } else {
949 disabled_slave = slave2;
950 }
951
952 if (bond->alb_info.rlb_enabled && slaves_state_differ) {
953 /* A disabled slave was assigned an active mac addr */
954 rlb_teach_disabled_mac_on_primary(bond,
955 disabled_slave->dev->dev_addr);
956 }
957}
958
959/**
960 * alb_change_hw_addr_on_detach
961 * @bond: bonding we're working on
962 * @slave: the slave that was just detached
963 *
964 * We assume that @slave was already detached from the slave list.
965 *
966 * If @slave's permanent hw address is different both from its current
967 * address and from @bond's address, then somewhere in the bond there's
968 * a slave that has @slave's permanet address as its current address.
969 * We'll make sure that that slave no longer uses @slave's permanent address.
970 *
971 * Caller must hold RTNL and no other locks
972 */
973static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
974{
975 int perm_curr_diff;
976 int perm_bond_diff;
977
978 perm_curr_diff = compare_ether_addr_64bits(slave->perm_hwaddr,
979 slave->dev->dev_addr);
980 perm_bond_diff = compare_ether_addr_64bits(slave->perm_hwaddr,
981 bond->dev->dev_addr);
982
983 if (perm_curr_diff && perm_bond_diff) {
984 struct slave *tmp_slave;
985 int i, found = 0;
986
987 bond_for_each_slave(bond, tmp_slave, i) {
988 if (!compare_ether_addr_64bits(slave->perm_hwaddr,
989 tmp_slave->dev->dev_addr)) {
990 found = 1;
991 break;
992 }
993 }
994
995 if (found) {
996 /* locking: needs RTNL and nothing else */
997 alb_swap_mac_addr(bond, slave, tmp_slave);
998 alb_fasten_mac_swap(bond, slave, tmp_slave);
999 }
1000 }
1001}
1002
1003/**
1004 * alb_handle_addr_collision_on_attach
1005 * @bond: bonding we're working on
1006 * @slave: the slave that was just attached
1007 *
1008 * checks uniqueness of slave's mac address and handles the case the
1009 * new slave uses the bonds mac address.
1010 *
1011 * If the permanent hw address of @slave is @bond's hw address, we need to
1012 * find a different hw address to give @slave, that isn't in use by any other
1013 * slave in the bond. This address must be, of course, one of the permanent
1014 * addresses of the other slaves.
1015 *
1016 * We go over the slave list, and for each slave there we compare its
1017 * permanent hw address with the current address of all the other slaves.
1018 * If no match was found, then we've found a slave with a permanent address
1019 * that isn't used by any other slave in the bond, so we can assign it to
1020 * @slave.
1021 *
1022 * assumption: this function is called before @slave is attached to the
1023 * bond slave list.
1024 *
1025 * caller must hold the bond lock for write since the mac addresses are compared
1026 * and may be swapped.
1027 */
1028static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1029{
1030 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1031 struct slave *has_bond_addr = bond->curr_active_slave;
1032 int i, j, found = 0;
1033
1034 if (bond->slave_cnt == 0) {
1035 /* this is the first slave */
1036 return 0;
1037 }
1038
1039 /* if slave's mac address differs from bond's mac address
1040 * check uniqueness of slave's mac address against the other
1041 * slaves in the bond.
1042 */
1043 if (compare_ether_addr_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) {
1044 bond_for_each_slave(bond, tmp_slave1, i) {
1045 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr,
1046 slave->dev->dev_addr)) {
1047 found = 1;
1048 break;
1049 }
1050 }
1051
1052 if (!found)
1053 return 0;
1054
1055 /* Try setting slave mac to bond address and fall-through
1056 to code handling that situation below... */
1057 alb_set_slave_mac_addr(slave, bond->dev->dev_addr);
1058 }
1059
1060 /* The slave's address is equal to the address of the bond.
1061 * Search for a spare address in the bond for this slave.
1062 */
1063 free_mac_slave = NULL;
1064
1065 bond_for_each_slave(bond, tmp_slave1, i) {
1066 found = 0;
1067 bond_for_each_slave(bond, tmp_slave2, j) {
1068 if (!compare_ether_addr_64bits(tmp_slave1->perm_hwaddr,
1069 tmp_slave2->dev->dev_addr)) {
1070 found = 1;
1071 break;
1072 }
1073 }
1074
1075 if (!found) {
1076 /* no slave has tmp_slave1's perm addr
1077 * as its curr addr
1078 */
1079 free_mac_slave = tmp_slave1;
1080 break;
1081 }
1082
1083 if (!has_bond_addr) {
1084 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr,
1085 bond->dev->dev_addr)) {
1086
1087 has_bond_addr = tmp_slave1;
1088 }
1089 }
1090 }
1091
1092 if (free_mac_slave) {
1093 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr);
1094
1095 pr_warning("%s: Warning: the hw address of slave %s is in use by the bond; giving it the hw address of %s\n",
1096 bond->dev->name, slave->dev->name,
1097 free_mac_slave->dev->name);
1098
1099 } else if (has_bond_addr) {
1100 pr_err("%s: Error: the hw address of slave %s is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n",
1101 bond->dev->name, slave->dev->name);
1102 return -EFAULT;
1103 }
1104
1105 return 0;
1106}
1107
1108/**
1109 * alb_set_mac_address
1110 * @bond:
1111 * @addr:
1112 *
1113 * In TLB mode all slaves are configured to the bond's hw address, but set
1114 * their dev_addr field to different addresses (based on their permanent hw
1115 * addresses).
1116 *
1117 * For each slave, this function sets the interface to the new address and then
1118 * changes its dev_addr field to its previous value.
1119 *
1120 * Unwinding assumes bond's mac address has not yet changed.
1121 */
1122static int alb_set_mac_address(struct bonding *bond, void *addr)
1123{
1124 struct sockaddr sa;
1125 struct slave *slave, *stop_at;
1126 char tmp_addr[ETH_ALEN];
1127 int res;
1128 int i;
1129
1130 if (bond->alb_info.rlb_enabled) {
1131 return 0;
1132 }
1133
1134 bond_for_each_slave(bond, slave, i) {
1135 /* save net_device's current hw address */
1136 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1137
1138 res = dev_set_mac_address(slave->dev, addr);
1139
1140 /* restore net_device's hw address */
1141 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1142
1143 if (res)
1144 goto unwind;
1145 }
1146
1147 return 0;
1148
1149unwind:
1150 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1151 sa.sa_family = bond->dev->type;
1152
1153 /* unwind from head to the slave that failed */
1154 stop_at = slave;
1155 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1156 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1157 dev_set_mac_address(slave->dev, &sa);
1158 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1159 }
1160
1161 return res;
1162}
1163
1164/************************ exported alb funcions ************************/
1165
1166int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1167{
1168 int res;
1169
1170 res = tlb_initialize(bond);
1171 if (res) {
1172 return res;
1173 }
1174
1175 if (rlb_enabled) {
1176 bond->alb_info.rlb_enabled = 1;
1177 /* initialize rlb */
1178 res = rlb_initialize(bond);
1179 if (res) {
1180 tlb_deinitialize(bond);
1181 return res;
1182 }
1183 } else {
1184 bond->alb_info.rlb_enabled = 0;
1185 }
1186
1187 return 0;
1188}
1189
1190void bond_alb_deinitialize(struct bonding *bond)
1191{
1192 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1193
1194 tlb_deinitialize(bond);
1195
1196 if (bond_info->rlb_enabled) {
1197 rlb_deinitialize(bond);
1198 }
1199}
1200
1201int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1202{
1203 struct bonding *bond = netdev_priv(bond_dev);
1204 struct ethhdr *eth_data;
1205 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1206 struct slave *tx_slave = NULL;
1207 static const __be32 ip_bcast = htonl(0xffffffff);
1208 int hash_size = 0;
1209 int do_tx_balance = 1;
1210 u32 hash_index = 0;
1211 const u8 *hash_start = NULL;
1212 int res = 1;
1213 struct ipv6hdr *ip6hdr;
1214
1215 skb_reset_mac_header(skb);
1216 eth_data = eth_hdr(skb);
1217
1218 /* make sure that the curr_active_slave do not change during tx
1219 */
1220 read_lock(&bond->curr_slave_lock);
1221
1222 switch (ntohs(skb->protocol)) {
1223 case ETH_P_IP: {
1224 const struct iphdr *iph = ip_hdr(skb);
1225
1226 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast) ||
1227 (iph->daddr == ip_bcast) ||
1228 (iph->protocol == IPPROTO_IGMP)) {
1229 do_tx_balance = 0;
1230 break;
1231 }
1232 hash_start = (char *)&(iph->daddr);
1233 hash_size = sizeof(iph->daddr);
1234 }
1235 break;
1236 case ETH_P_IPV6:
1237 /* IPv6 doesn't really use broadcast mac address, but leave
1238 * that here just in case.
1239 */
1240 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast)) {
1241 do_tx_balance = 0;
1242 break;
1243 }
1244
1245 /* IPv6 uses all-nodes multicast as an equivalent to
1246 * broadcasts in IPv4.
1247 */
1248 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_v6_allmcast)) {
1249 do_tx_balance = 0;
1250 break;
1251 }
1252
1253 /* Additianally, DAD probes should not be tx-balanced as that
1254 * will lead to false positives for duplicate addresses and
1255 * prevent address configuration from working.
1256 */
1257 ip6hdr = ipv6_hdr(skb);
1258 if (ipv6_addr_any(&ip6hdr->saddr)) {
1259 do_tx_balance = 0;
1260 break;
1261 }
1262
1263 hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1264 hash_size = sizeof(ipv6_hdr(skb)->daddr);
1265 break;
1266 case ETH_P_IPX:
1267 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1268 /* something is wrong with this packet */
1269 do_tx_balance = 0;
1270 break;
1271 }
1272
1273 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1274 /* The only protocol worth balancing in
1275 * this family since it has an "ARP" like
1276 * mechanism
1277 */
1278 do_tx_balance = 0;
1279 break;
1280 }
1281
1282 hash_start = (char*)eth_data->h_dest;
1283 hash_size = ETH_ALEN;
1284 break;
1285 case ETH_P_ARP:
1286 do_tx_balance = 0;
1287 if (bond_info->rlb_enabled) {
1288 tx_slave = rlb_arp_xmit(skb, bond);
1289 }
1290 break;
1291 default:
1292 do_tx_balance = 0;
1293 break;
1294 }
1295
1296 if (do_tx_balance) {
1297 hash_index = _simple_hash(hash_start, hash_size);
1298 tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1299 }
1300
1301 if (!tx_slave) {
1302 /* unbalanced or unassigned, send through primary */
1303 tx_slave = bond->curr_active_slave;
1304 bond_info->unbalanced_load += skb->len;
1305 }
1306
1307 if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1308 if (tx_slave != bond->curr_active_slave) {
1309 memcpy(eth_data->h_source,
1310 tx_slave->dev->dev_addr,
1311 ETH_ALEN);
1312 }
1313
1314 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1315 } else {
1316 if (tx_slave) {
1317 tlb_clear_slave(bond, tx_slave, 0);
1318 }
1319 }
1320
1321 if (res) {
1322 /* no suitable interface, frame not sent */
1323 dev_kfree_skb(skb);
1324 }
1325 read_unlock(&bond->curr_slave_lock);
1326
1327 return NETDEV_TX_OK;
1328}
1329
1330void bond_alb_monitor(struct work_struct *work)
1331{
1332 struct bonding *bond = container_of(work, struct bonding,
1333 alb_work.work);
1334 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1335 struct slave *slave;
1336 int i;
1337
1338 read_lock(&bond->lock);
1339
1340 if (bond->kill_timers) {
1341 goto out;
1342 }
1343
1344 if (bond->slave_cnt == 0) {
1345 bond_info->tx_rebalance_counter = 0;
1346 bond_info->lp_counter = 0;
1347 goto re_arm;
1348 }
1349
1350 bond_info->tx_rebalance_counter++;
1351 bond_info->lp_counter++;
1352
1353 /* send learning packets */
1354 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1355 /* change of curr_active_slave involves swapping of mac addresses.
1356 * in order to avoid this swapping from happening while
1357 * sending the learning packets, the curr_slave_lock must be held for
1358 * read.
1359 */
1360 read_lock(&bond->curr_slave_lock);
1361
1362 bond_for_each_slave(bond, slave, i) {
1363 alb_send_learning_packets(slave, slave->dev->dev_addr);
1364 }
1365
1366 read_unlock(&bond->curr_slave_lock);
1367
1368 bond_info->lp_counter = 0;
1369 }
1370
1371 /* rebalance tx traffic */
1372 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1373
1374 read_lock(&bond->curr_slave_lock);
1375
1376 bond_for_each_slave(bond, slave, i) {
1377 tlb_clear_slave(bond, slave, 1);
1378 if (slave == bond->curr_active_slave) {
1379 SLAVE_TLB_INFO(slave).load =
1380 bond_info->unbalanced_load /
1381 BOND_TLB_REBALANCE_INTERVAL;
1382 bond_info->unbalanced_load = 0;
1383 }
1384 }
1385
1386 read_unlock(&bond->curr_slave_lock);
1387
1388 bond_info->tx_rebalance_counter = 0;
1389 }
1390
1391 /* handle rlb stuff */
1392 if (bond_info->rlb_enabled) {
1393 if (bond_info->primary_is_promisc &&
1394 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1395
1396 /*
1397 * dev_set_promiscuity requires rtnl and
1398 * nothing else.
1399 */
1400 read_unlock(&bond->lock);
1401 rtnl_lock();
1402
1403 bond_info->rlb_promisc_timeout_counter = 0;
1404
1405 /* If the primary was set to promiscuous mode
1406 * because a slave was disabled then
1407 * it can now leave promiscuous mode.
1408 */
1409 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1410 bond_info->primary_is_promisc = 0;
1411
1412 rtnl_unlock();
1413 read_lock(&bond->lock);
1414 }
1415
1416 if (bond_info->rlb_rebalance) {
1417 bond_info->rlb_rebalance = 0;
1418 rlb_rebalance(bond);
1419 }
1420
1421 /* check if clients need updating */
1422 if (bond_info->rx_ntt) {
1423 if (bond_info->rlb_update_delay_counter) {
1424 --bond_info->rlb_update_delay_counter;
1425 } else {
1426 rlb_update_rx_clients(bond);
1427 if (bond_info->rlb_update_retry_counter) {
1428 --bond_info->rlb_update_retry_counter;
1429 } else {
1430 bond_info->rx_ntt = 0;
1431 }
1432 }
1433 }
1434 }
1435
1436re_arm:
1437 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1438out:
1439 read_unlock(&bond->lock);
1440}
1441
1442/* assumption: called before the slave is attached to the bond
1443 * and not locked by the bond lock
1444 */
1445int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1446{
1447 int res;
1448
1449 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr);
1450 if (res) {
1451 return res;
1452 }
1453
1454 /* caller must hold the bond lock for write since the mac addresses
1455 * are compared and may be swapped.
1456 */
1457 read_lock(&bond->lock);
1458
1459 res = alb_handle_addr_collision_on_attach(bond, slave);
1460
1461 read_unlock(&bond->lock);
1462
1463 if (res) {
1464 return res;
1465 }
1466
1467 tlb_init_slave(slave);
1468
1469 /* order a rebalance ASAP */
1470 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1471
1472 if (bond->alb_info.rlb_enabled) {
1473 bond->alb_info.rlb_rebalance = 1;
1474 }
1475
1476 return 0;
1477}
1478
1479/*
1480 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1481 * if necessary.
1482 *
1483 * Caller must hold RTNL and no other locks
1484 */
1485void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1486{
1487 if (bond->slave_cnt > 1) {
1488 alb_change_hw_addr_on_detach(bond, slave);
1489 }
1490
1491 tlb_clear_slave(bond, slave, 0);
1492
1493 if (bond->alb_info.rlb_enabled) {
1494 bond->alb_info.next_rx_slave = NULL;
1495 rlb_clear_slave(bond, slave);
1496 }
1497}
1498
1499/* Caller must hold bond lock for read */
1500void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1501{
1502 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1503
1504 if (link == BOND_LINK_DOWN) {
1505 tlb_clear_slave(bond, slave, 0);
1506 if (bond->alb_info.rlb_enabled) {
1507 rlb_clear_slave(bond, slave);
1508 }
1509 } else if (link == BOND_LINK_UP) {
1510 /* order a rebalance ASAP */
1511 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1512 if (bond->alb_info.rlb_enabled) {
1513 bond->alb_info.rlb_rebalance = 1;
1514 /* If the updelay module parameter is smaller than the
1515 * forwarding delay of the switch the rebalance will
1516 * not work because the rebalance arp replies will
1517 * not be forwarded to the clients..
1518 */
1519 }
1520 }
1521}
1522
1523/**
1524 * bond_alb_handle_active_change - assign new curr_active_slave
1525 * @bond: our bonding struct
1526 * @new_slave: new slave to assign
1527 *
1528 * Set the bond->curr_active_slave to @new_slave and handle
1529 * mac address swapping and promiscuity changes as needed.
1530 *
1531 * If new_slave is NULL, caller must hold curr_slave_lock or
1532 * bond->lock for write.
1533 *
1534 * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1535 * read and curr_slave_lock for write. Processing here may sleep, so
1536 * no other locks may be held.
1537 */
1538void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1539 __releases(&bond->curr_slave_lock)
1540 __releases(&bond->lock)
1541 __acquires(&bond->lock)
1542 __acquires(&bond->curr_slave_lock)
1543{
1544 struct slave *swap_slave;
1545 int i;
1546
1547 if (bond->curr_active_slave == new_slave) {
1548 return;
1549 }
1550
1551 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1552 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1553 bond->alb_info.primary_is_promisc = 0;
1554 bond->alb_info.rlb_promisc_timeout_counter = 0;
1555 }
1556
1557 swap_slave = bond->curr_active_slave;
1558 bond->curr_active_slave = new_slave;
1559
1560 if (!new_slave || (bond->slave_cnt == 0)) {
1561 return;
1562 }
1563
1564 /* set the new curr_active_slave to the bonds mac address
1565 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1566 */
1567 if (!swap_slave) {
1568 struct slave *tmp_slave;
1569 /* find slave that is holding the bond's mac address */
1570 bond_for_each_slave(bond, tmp_slave, i) {
1571 if (!compare_ether_addr_64bits(tmp_slave->dev->dev_addr,
1572 bond->dev->dev_addr)) {
1573 swap_slave = tmp_slave;
1574 break;
1575 }
1576 }
1577 }
1578
1579 /*
1580 * Arrange for swap_slave and new_slave to temporarily be
1581 * ignored so we can mess with their MAC addresses without
1582 * fear of interference from transmit activity.
1583 */
1584 if (swap_slave) {
1585 tlb_clear_slave(bond, swap_slave, 1);
1586 }
1587 tlb_clear_slave(bond, new_slave, 1);
1588
1589 write_unlock_bh(&bond->curr_slave_lock);
1590 read_unlock(&bond->lock);
1591
1592 ASSERT_RTNL();
1593
1594 /* curr_active_slave must be set before calling alb_swap_mac_addr */
1595 if (swap_slave) {
1596 /* swap mac address */
1597 alb_swap_mac_addr(bond, swap_slave, new_slave);
1598 } else {
1599 /* set the new_slave to the bond mac address */
1600 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr);
1601 }
1602
1603 if (swap_slave) {
1604 alb_fasten_mac_swap(bond, swap_slave, new_slave);
1605 read_lock(&bond->lock);
1606 } else {
1607 read_lock(&bond->lock);
1608 alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1609 }
1610
1611 write_lock_bh(&bond->curr_slave_lock);
1612}
1613
1614/*
1615 * Called with RTNL
1616 */
1617int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1618 __acquires(&bond->lock)
1619 __releases(&bond->lock)
1620{
1621 struct bonding *bond = netdev_priv(bond_dev);
1622 struct sockaddr *sa = addr;
1623 struct slave *slave, *swap_slave;
1624 int res;
1625 int i;
1626
1627 if (!is_valid_ether_addr(sa->sa_data)) {
1628 return -EADDRNOTAVAIL;
1629 }
1630
1631 res = alb_set_mac_address(bond, addr);
1632 if (res) {
1633 return res;
1634 }
1635
1636 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1637
1638 /* If there is no curr_active_slave there is nothing else to do.
1639 * Otherwise we'll need to pass the new address to it and handle
1640 * duplications.
1641 */
1642 if (!bond->curr_active_slave) {
1643 return 0;
1644 }
1645
1646 swap_slave = NULL;
1647
1648 bond_for_each_slave(bond, slave, i) {
1649 if (!compare_ether_addr_64bits(slave->dev->dev_addr,
1650 bond_dev->dev_addr)) {
1651 swap_slave = slave;
1652 break;
1653 }
1654 }
1655
1656 if (swap_slave) {
1657 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1658 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1659 } else {
1660 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr);
1661
1662 read_lock(&bond->lock);
1663 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1664 if (bond->alb_info.rlb_enabled) {
1665 /* inform clients mac address has changed */
1666 rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1667 }
1668 read_unlock(&bond->lock);
1669 }
1670
1671 return 0;
1672}
1673
1674void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1675{
1676 if (bond->alb_info.current_alb_vlan &&
1677 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1678 bond->alb_info.current_alb_vlan = NULL;
1679 }
1680
1681 if (bond->alb_info.rlb_enabled) {
1682 rlb_clear_vlan(bond, vlan_id);
1683 }
1684}
1685