PageRenderTime 128ms CodeModel.GetById 43ms app.highlight 75ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/net/bnx2x/bnx2x_init_ops.h

https://bitbucket.org/slukk/jb-tsm-kernel-4.2
C Header | 866 lines | 661 code | 115 blank | 90 comment | 74 complexity | c54dffc6be988cb24984a4a7b568e358 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1/* bnx2x_init_ops.h: Broadcom Everest network driver.
  2 *               Static functions needed during the initialization.
  3 *               This file is "included" in bnx2x_main.c.
  4 *
  5 * Copyright (c) 2007-2011 Broadcom Corporation
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation.
 10 *
 11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
 12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
 13 */
 14
 15#ifndef BNX2X_INIT_OPS_H
 16#define BNX2X_INIT_OPS_H
 17
 18static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
 19static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
 20static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 21				      u32 addr, u32 len);
 22
 23static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
 24			      u32 len)
 25{
 26	u32 i;
 27
 28	for (i = 0; i < len; i++)
 29		REG_WR(bp, addr + i*4, data[i]);
 30}
 31
 32static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
 33			      u32 len)
 34{
 35	u32 i;
 36
 37	for (i = 0; i < len; i++)
 38		REG_WR_IND(bp, addr + i*4, data[i]);
 39}
 40
 41static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
 42{
 43	if (bp->dmae_ready)
 44		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
 45	else
 46		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
 47}
 48
 49static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
 50{
 51	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
 52	u32 buf_len32 = buf_len/4;
 53	u32 i;
 54
 55	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
 56
 57	for (i = 0; i < len; i += buf_len32) {
 58		u32 cur_len = min(buf_len32, len - i);
 59
 60		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
 61	}
 62}
 63
 64static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
 65			     u32 len64)
 66{
 67	u32 buf_len32 = FW_BUF_SIZE/4;
 68	u32 len = len64*2;
 69	u64 data64 = 0;
 70	u32 i;
 71
 72	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
 73	data64 = HILO_U64((*(data + 1)), (*data));
 74
 75	len64 = min((u32)(FW_BUF_SIZE/8), len64);
 76	for (i = 0; i < len64; i++) {
 77		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
 78
 79		*pdata = data64;
 80	}
 81
 82	for (i = 0; i < len; i += buf_len32) {
 83		u32 cur_len = min(buf_len32, len - i);
 84
 85		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
 86	}
 87}
 88
 89/*********************************************************
 90   There are different blobs for each PRAM section.
 91   In addition, each blob write operation is divided into a few operations
 92   in order to decrease the amount of phys. contiguous buffer needed.
 93   Thus, when we select a blob the address may be with some offset
 94   from the beginning of PRAM section.
 95   The same holds for the INT_TABLE sections.
 96**********************************************************/
 97#define IF_IS_INT_TABLE_ADDR(base, addr) \
 98			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
 99
100#define IF_IS_PRAM_ADDR(base, addr) \
101			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
102
103static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
104{
105	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
106		data = INIT_TSEM_INT_TABLE_DATA(bp);
107	else
108		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
109			data = INIT_CSEM_INT_TABLE_DATA(bp);
110	else
111		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
112			data = INIT_USEM_INT_TABLE_DATA(bp);
113	else
114		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
115			data = INIT_XSEM_INT_TABLE_DATA(bp);
116	else
117		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
118			data = INIT_TSEM_PRAM_DATA(bp);
119	else
120		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
121			data = INIT_CSEM_PRAM_DATA(bp);
122	else
123		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
124			data = INIT_USEM_PRAM_DATA(bp);
125	else
126		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
127			data = INIT_XSEM_PRAM_DATA(bp);
128
129	return data;
130}
131
132static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
133{
134	if (bp->dmae_ready)
135		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
136	else
137		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
138}
139
140static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
141			     u32 len)
142{
143	const u32 *old_data = data;
144
145	data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
146
147	if (bp->dmae_ready) {
148		if (old_data != data)
149			VIRT_WR_DMAE_LEN(bp, data, addr, len, 1);
150		else
151			VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
152	} else
153		bnx2x_init_ind_wr(bp, addr, data, len);
154}
155
156static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, u32 val_hi)
157{
158	u32 wb_write[2];
159
160	wb_write[0] = val_lo;
161	wb_write[1] = val_hi;
162	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
163}
164
165static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
166{
167	const u8 *data = NULL;
168	int rc;
169	u32 i;
170
171	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
172
173	rc = bnx2x_gunzip(bp, data, len);
174	if (rc)
175		return;
176
177	/* gunzip_outlen is in dwords */
178	len = GUNZIP_OUTLEN(bp);
179	for (i = 0; i < len; i++)
180		((u32 *)GUNZIP_BUF(bp))[i] =
181				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
182
183	bnx2x_write_big_buf_wb(bp, addr, len);
184}
185
186static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
187{
188	u16 op_start =
189		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
190	u16 op_end =
191		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
192	union init_op *op;
193	int hw_wr;
194	u32 i, op_type, addr, len;
195	const u32 *data, *data_base;
196
197	/* If empty block */
198	if (op_start == op_end)
199		return;
200
201	if (CHIP_REV_IS_FPGA(bp))
202		hw_wr = OP_WR_FPGA;
203	else if (CHIP_REV_IS_EMUL(bp))
204		hw_wr = OP_WR_EMUL;
205	else
206		hw_wr = OP_WR_ASIC;
207
208	data_base = INIT_DATA(bp);
209
210	for (i = op_start; i < op_end; i++) {
211
212		op = (union init_op *)&(INIT_OPS(bp)[i]);
213
214		op_type = op->str_wr.op;
215		addr = op->str_wr.offset;
216		len = op->str_wr.data_len;
217		data = data_base + op->str_wr.data_off;
218
219		/* HW/EMUL specific */
220		if ((op_type > OP_WB) && (op_type == hw_wr))
221			op_type = OP_WR;
222
223		switch (op_type) {
224		case OP_RD:
225			REG_RD(bp, addr);
226			break;
227		case OP_WR:
228			REG_WR(bp, addr, op->write.val);
229			break;
230		case OP_SW:
231			bnx2x_init_str_wr(bp, addr, data, len);
232			break;
233		case OP_WB:
234			bnx2x_init_wr_wb(bp, addr, data, len);
235			break;
236		case OP_SI:
237			bnx2x_init_ind_wr(bp, addr, data, len);
238			break;
239		case OP_ZR:
240			bnx2x_init_fill(bp, addr, 0, op->zero.len);
241			break;
242		case OP_ZP:
243			bnx2x_init_wr_zp(bp, addr, len,
244					 op->str_wr.data_off);
245			break;
246		case OP_WR_64:
247			bnx2x_init_wr_64(bp, addr, data, len);
248			break;
249		default:
250			/* happens whenever an op is of a diff HW */
251			break;
252		}
253	}
254}
255
256
257/****************************************************************************
258* PXP Arbiter
259****************************************************************************/
260/*
261 * This code configures the PCI read/write arbiter
262 * which implements a weighted round robin
263 * between the virtual queues in the chip.
264 *
265 * The values were derived for each PCI max payload and max request size.
266 * since max payload and max request size are only known at run time,
267 * this is done as a separate init stage.
268 */
269
270#define NUM_WR_Q			13
271#define NUM_RD_Q			29
272#define MAX_RD_ORD			3
273#define MAX_WR_ORD			2
274
275/* configuration for one arbiter queue */
276struct arb_line {
277	int l;
278	int add;
279	int ubound;
280};
281
282/* derived configuration for each read queue for each max request size */
283static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
284/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
285	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
286	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
287	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
288	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
289	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
290	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
291	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
292	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
293/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
294	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
295	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
296	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
297	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
298	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
299	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
300	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
301	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
302	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
303/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
304	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
305	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
306	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
307	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
308	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
309	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
310	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
311	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
312	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
313};
314
315/* derived configuration for each write queue for each max request size */
316static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
317/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
318	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
319	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
320	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
321	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
322	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
323	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
324	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
325	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
326/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
327	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
328	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
329	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
330};
331
332/* register addresses for read queues */
333static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
334/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
335		PXP2_REG_RQ_BW_RD_UBOUND0},
336	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
337		PXP2_REG_PSWRQ_BW_UB1},
338	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
339		PXP2_REG_PSWRQ_BW_UB2},
340	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
341		PXP2_REG_PSWRQ_BW_UB3},
342	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
343		PXP2_REG_RQ_BW_RD_UBOUND4},
344	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
345		PXP2_REG_RQ_BW_RD_UBOUND5},
346	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
347		PXP2_REG_PSWRQ_BW_UB6},
348	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
349		PXP2_REG_PSWRQ_BW_UB7},
350	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
351		PXP2_REG_PSWRQ_BW_UB8},
352/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
353		PXP2_REG_PSWRQ_BW_UB9},
354	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
355		PXP2_REG_PSWRQ_BW_UB10},
356	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
357		PXP2_REG_PSWRQ_BW_UB11},
358	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
359		PXP2_REG_RQ_BW_RD_UBOUND12},
360	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
361		PXP2_REG_RQ_BW_RD_UBOUND13},
362	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
363		PXP2_REG_RQ_BW_RD_UBOUND14},
364	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
365		PXP2_REG_RQ_BW_RD_UBOUND15},
366	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
367		PXP2_REG_RQ_BW_RD_UBOUND16},
368	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
369		PXP2_REG_RQ_BW_RD_UBOUND17},
370	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
371		PXP2_REG_RQ_BW_RD_UBOUND18},
372/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
373		PXP2_REG_RQ_BW_RD_UBOUND19},
374	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
375		PXP2_REG_RQ_BW_RD_UBOUND20},
376	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
377		PXP2_REG_RQ_BW_RD_UBOUND22},
378	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
379		PXP2_REG_RQ_BW_RD_UBOUND23},
380	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
381		PXP2_REG_RQ_BW_RD_UBOUND24},
382	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
383		PXP2_REG_RQ_BW_RD_UBOUND25},
384	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
385		PXP2_REG_RQ_BW_RD_UBOUND26},
386	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
387		PXP2_REG_RQ_BW_RD_UBOUND27},
388	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
389		PXP2_REG_PSWRQ_BW_UB28}
390};
391
392/* register addresses for write queues */
393static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
394/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
395		PXP2_REG_PSWRQ_BW_UB1},
396	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
397		PXP2_REG_PSWRQ_BW_UB2},
398	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
399		PXP2_REG_PSWRQ_BW_UB3},
400	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
401		PXP2_REG_PSWRQ_BW_UB6},
402	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
403		PXP2_REG_PSWRQ_BW_UB7},
404	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
405		PXP2_REG_PSWRQ_BW_UB8},
406	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
407		PXP2_REG_PSWRQ_BW_UB9},
408	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
409		PXP2_REG_PSWRQ_BW_UB10},
410	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
411		PXP2_REG_PSWRQ_BW_UB11},
412/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
413		PXP2_REG_PSWRQ_BW_UB28},
414	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
415		PXP2_REG_RQ_BW_WR_UBOUND29},
416	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
417		PXP2_REG_RQ_BW_WR_UBOUND30}
418};
419
420static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
421{
422	u32 val, i;
423
424	if (r_order > MAX_RD_ORD) {
425		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
426		   r_order, MAX_RD_ORD);
427		r_order = MAX_RD_ORD;
428	}
429	if (w_order > MAX_WR_ORD) {
430		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
431		   w_order, MAX_WR_ORD);
432		w_order = MAX_WR_ORD;
433	}
434	if (CHIP_REV_IS_FPGA(bp)) {
435		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
436		w_order = 0;
437	}
438	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
439
440	for (i = 0; i < NUM_RD_Q-1; i++) {
441		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
442		REG_WR(bp, read_arb_addr[i].add,
443		       read_arb_data[i][r_order].add);
444		REG_WR(bp, read_arb_addr[i].ubound,
445		       read_arb_data[i][r_order].ubound);
446	}
447
448	for (i = 0; i < NUM_WR_Q-1; i++) {
449		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
450		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
451
452			REG_WR(bp, write_arb_addr[i].l,
453			       write_arb_data[i][w_order].l);
454
455			REG_WR(bp, write_arb_addr[i].add,
456			       write_arb_data[i][w_order].add);
457
458			REG_WR(bp, write_arb_addr[i].ubound,
459			       write_arb_data[i][w_order].ubound);
460		} else {
461
462			val = REG_RD(bp, write_arb_addr[i].l);
463			REG_WR(bp, write_arb_addr[i].l,
464			       val | (write_arb_data[i][w_order].l << 10));
465
466			val = REG_RD(bp, write_arb_addr[i].add);
467			REG_WR(bp, write_arb_addr[i].add,
468			       val | (write_arb_data[i][w_order].add << 10));
469
470			val = REG_RD(bp, write_arb_addr[i].ubound);
471			REG_WR(bp, write_arb_addr[i].ubound,
472			       val | (write_arb_data[i][w_order].ubound << 7));
473		}
474	}
475
476	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
477	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
478	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
479	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
480
481	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
482	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
483	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
484	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
485
486	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
487	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
488	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
489	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
490
491	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
492		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
493
494	if (CHIP_IS_E2(bp))
495		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
496	else
497		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
498
499	if (CHIP_IS_E1H(bp) || CHIP_IS_E2(bp)) {
500		/*    MPS      w_order     optimal TH      presently TH
501		 *    128         0             0               2
502		 *    256         1             1               3
503		 *    >=512       2             2               3
504		 */
505		/* DMAE is special */
506		if (CHIP_IS_E2(bp)) {
507			/* E2 can use optimal TH */
508			val = w_order;
509			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
510		} else {
511			val = ((w_order == 0) ? 2 : 3);
512			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
513		}
514
515		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
516		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
517		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
518		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
519		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
520		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
521		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
522		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
523		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
524		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
525	}
526
527	/* Validate number of tags suppoted by device */
528#define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
529	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
530	val &= 0xFF;
531	if (val <= 0x20)
532		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
533}
534
535/****************************************************************************
536* ILT management
537****************************************************************************/
538/*
539 * This codes hides the low level HW interaction for ILT management and
540 * configuration. The API consists of a shadow ILT table which is set by the
541 * driver and a set of routines to use it to configure the HW.
542 *
543 */
544
545/* ILT HW init operations */
546
547/* ILT memory management operations */
548#define ILT_MEMOP_ALLOC		0
549#define ILT_MEMOP_FREE		1
550
551/* the phys address is shifted right 12 bits and has an added
552 * 1=valid bit added to the 53rd bit
553 * then since this is a wide register(TM)
554 * we split it into two 32 bit writes
555 */
556#define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
557#define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
558#define ILT_RANGE(f, l)		(((l) << 10) | f)
559
560static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, struct ilt_line *line,
561				 u32 size, u8 memop)
562{
563	if (memop == ILT_MEMOP_FREE) {
564		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
565		return 0;
566	}
567	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
568	if (!line->page)
569		return -1;
570	line->size = size;
571	return 0;
572}
573
574
575static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, u8 memop)
576{
577	int i, rc;
578	struct bnx2x_ilt *ilt = BP_ILT(bp);
579	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
580
581	if (!ilt || !ilt->lines)
582		return -1;
583
584	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
585		return 0;
586
587	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
588		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
589					   ilt_cli->page_size, memop);
590	}
591	return rc;
592}
593
594static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
595{
596	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
597	if (!rc)
598		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
599	if (!rc)
600		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
601	if (!rc)
602		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
603
604	return rc;
605}
606
607static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
608			      dma_addr_t page_mapping)
609{
610	u32 reg;
611
612	if (CHIP_IS_E1(bp))
613		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
614	else
615		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
616
617	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
618}
619
620static void bnx2x_ilt_line_init_op(struct bnx2x *bp, struct bnx2x_ilt *ilt,
621				   int idx, u8 initop)
622{
623	dma_addr_t	null_mapping;
624	int abs_idx = ilt->start_line + idx;
625
626
627	switch (initop) {
628	case INITOP_INIT:
629		/* set in the init-value array */
630	case INITOP_SET:
631		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
632		break;
633	case INITOP_CLEAR:
634		null_mapping = 0;
635		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
636		break;
637	}
638}
639
640static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
641				      struct ilt_client_info *ilt_cli,
642				      u32 ilt_start, u8 initop)
643{
644	u32 start_reg = 0;
645	u32 end_reg = 0;
646
647	/* The boundary is either SET or INIT,
648	   CLEAR => SET and for now SET ~~ INIT */
649
650	/* find the appropriate regs */
651	if (CHIP_IS_E1(bp)) {
652		switch (ilt_cli->client_num) {
653		case ILT_CLIENT_CDU:
654			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
655			break;
656		case ILT_CLIENT_QM:
657			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
658			break;
659		case ILT_CLIENT_SRC:
660			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
661			break;
662		case ILT_CLIENT_TM:
663			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
664			break;
665		}
666		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
667		       ILT_RANGE((ilt_start + ilt_cli->start),
668				 (ilt_start + ilt_cli->end)));
669	} else {
670		switch (ilt_cli->client_num) {
671		case ILT_CLIENT_CDU:
672			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
673			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
674			break;
675		case ILT_CLIENT_QM:
676			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
677			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
678			break;
679		case ILT_CLIENT_SRC:
680			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
681			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
682			break;
683		case ILT_CLIENT_TM:
684			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
685			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
686			break;
687		}
688		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
689		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
690	}
691}
692
693static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
694					 struct bnx2x_ilt *ilt,
695					 struct ilt_client_info *ilt_cli,
696					 u8 initop)
697{
698	int i;
699
700	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
701		return;
702
703	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
704		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
705
706	/* init/clear the ILT boundries */
707	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
708}
709
710static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
711				     struct ilt_client_info *ilt_cli, u8 initop)
712{
713	struct bnx2x_ilt *ilt = BP_ILT(bp);
714
715	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
716}
717
718static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
719					int cli_num, u8 initop)
720{
721	struct bnx2x_ilt *ilt = BP_ILT(bp);
722	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
723
724	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
725}
726
727static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
728{
729	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
730	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
731	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
732	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
733}
734
735static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
736					    u32 psz_reg, u8 initop)
737{
738	struct bnx2x_ilt *ilt = BP_ILT(bp);
739	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
740
741	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
742		return;
743
744	switch (initop) {
745	case INITOP_INIT:
746		/* set in the init-value array */
747	case INITOP_SET:
748		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
749		break;
750	case INITOP_CLEAR:
751		break;
752	}
753}
754
755/*
756 * called during init common stage, ilt clients should be initialized
757 * prioir to calling this function
758 */
759static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
760{
761	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
762				  PXP2_REG_RQ_CDU_P_SIZE, initop);
763	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
764				  PXP2_REG_RQ_QM_P_SIZE, initop);
765	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
766				  PXP2_REG_RQ_SRC_P_SIZE, initop);
767	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
768				  PXP2_REG_RQ_TM_P_SIZE, initop);
769}
770
771/****************************************************************************
772* QM initializations
773****************************************************************************/
774#define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
775#define QM_INIT_MIN_CID_COUNT	31
776#define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
777
778/* called during init port stage */
779static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
780				    u8 initop)
781{
782	int port = BP_PORT(bp);
783
784	if (QM_INIT(qm_cid_count)) {
785		switch (initop) {
786		case INITOP_INIT:
787			/* set in the init-value array */
788		case INITOP_SET:
789			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
790			       qm_cid_count/16 - 1);
791			break;
792		case INITOP_CLEAR:
793			break;
794		}
795	}
796}
797
798static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
799{
800	int i;
801	u32 wb_data[2];
802
803	wb_data[0] = wb_data[1] = 0;
804
805	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
806		REG_WR(bp, QM_REG_BASEADDR + i*4,
807		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
808		bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
809				  wb_data, 2);
810
811		if (CHIP_IS_E1H(bp)) {
812			REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
813			       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
814			bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
815					  wb_data, 2);
816		}
817	}
818}
819
820/* called during init common stage */
821static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
822				    u8 initop)
823{
824	if (!QM_INIT(qm_cid_count))
825		return;
826
827	switch (initop) {
828	case INITOP_INIT:
829		/* set in the init-value array */
830	case INITOP_SET:
831		bnx2x_qm_set_ptr_table(bp, qm_cid_count);
832		break;
833	case INITOP_CLEAR:
834		break;
835	}
836}
837
838/****************************************************************************
839* SRC initializations
840****************************************************************************/
841#ifdef BCM_CNIC
842/* called during init func stage */
843static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
844			      dma_addr_t t2_mapping, int src_cid_count)
845{
846	int i;
847	int port = BP_PORT(bp);
848
849	/* Initialize T2 */
850	for (i = 0; i < src_cid_count-1; i++)
851		t2[i].next = (u64)(t2_mapping + (i+1)*sizeof(struct src_ent));
852
853	/* tell the searcher where the T2 table is */
854	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
855
856	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
857		    U64_LO(t2_mapping), U64_HI(t2_mapping));
858
859	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
860		    U64_LO((u64)t2_mapping +
861			   (src_cid_count-1) * sizeof(struct src_ent)),
862		    U64_HI((u64)t2_mapping +
863			   (src_cid_count-1) * sizeof(struct src_ent)));
864}
865#endif
866#endif /* BNX2X_INIT_OPS_H */