PageRenderTime 44ms CodeModel.GetById 20ms app.highlight 21ms RepoModel.GetById 0ms app.codeStats 0ms

/drivers/mtd/nand/bcm_umi_nand.c

https://bitbucket.org/slukk/jb-tsm-kernel-4.2
C | 579 lines | 407 code | 98 blank | 74 comment | 52 complexity | 317de8254d5dfbae6ee2ba07de493a24 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1/*****************************************************************************
  2* Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
  3*
  4* Unless you and Broadcom execute a separate written software license
  5* agreement governing use of this software, this software is licensed to you
  6* under the terms of the GNU General Public License version 2, available at
  7* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
  8*
  9* Notwithstanding the above, under no circumstances may you combine this
 10* software in any way with any other Broadcom software provided under a
 11* license other than the GPL, without Broadcom's express prior written
 12* consent.
 13*****************************************************************************/
 14
 15/* ---- Include Files ---------------------------------------------------- */
 16#include <linux/module.h>
 17#include <linux/types.h>
 18#include <linux/init.h>
 19#include <linux/kernel.h>
 20#include <linux/slab.h>
 21#include <linux/string.h>
 22#include <linux/ioport.h>
 23#include <linux/device.h>
 24#include <linux/delay.h>
 25#include <linux/err.h>
 26#include <linux/io.h>
 27#include <linux/platform_device.h>
 28#include <linux/mtd/mtd.h>
 29#include <linux/mtd/nand.h>
 30#include <linux/mtd/nand_ecc.h>
 31#include <linux/mtd/partitions.h>
 32
 33#include <asm/mach-types.h>
 34#include <asm/system.h>
 35
 36#include <mach/reg_nand.h>
 37#include <mach/reg_umi.h>
 38
 39#include "nand_bcm_umi.h"
 40
 41#include <mach/memory_settings.h>
 42
 43#define USE_DMA 1
 44#include <mach/dma.h>
 45#include <linux/dma-mapping.h>
 46#include <linux/completion.h>
 47
 48/* ---- External Variable Declarations ----------------------------------- */
 49/* ---- External Function Prototypes ------------------------------------- */
 50/* ---- Public Variables ------------------------------------------------- */
 51/* ---- Private Constants and Types -------------------------------------- */
 52static const __devinitconst char gBanner[] = KERN_INFO \
 53	"BCM UMI MTD NAND Driver: 1.00\n";
 54
 55const char *part_probes[] = { "cmdlinepart", NULL };
 56
 57#if NAND_ECC_BCH
 58static uint8_t scan_ff_pattern[] = { 0xff };
 59
 60static struct nand_bbt_descr largepage_bbt = {
 61	.options = 0,
 62	.offs = 0,
 63	.len = 1,
 64	.pattern = scan_ff_pattern
 65};
 66#endif
 67
 68/*
 69** Preallocate a buffer to avoid having to do this every dma operation.
 70** This is the size of the preallocated coherent DMA buffer.
 71*/
 72#if USE_DMA
 73#define DMA_MIN_BUFLEN	512
 74#define DMA_MAX_BUFLEN	PAGE_SIZE
 75#define USE_DIRECT_IO(len)	(((len) < DMA_MIN_BUFLEN) || \
 76	((len) > DMA_MAX_BUFLEN))
 77
 78/*
 79 * The current NAND data space goes from 0x80001900 to 0x80001FFF,
 80 * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
 81 * size NAND flash. Need to break the DMA down to multiple 1Ks.
 82 *
 83 * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
 84 */
 85#define DMA_MAX_LEN             1024
 86
 87#else /* !USE_DMA */
 88#define DMA_MIN_BUFLEN          0
 89#define DMA_MAX_BUFLEN          0
 90#define USE_DIRECT_IO(len)      1
 91#endif
 92/* ---- Private Function Prototypes -------------------------------------- */
 93static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
 94static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
 95				   int len);
 96
 97/* ---- Private Variables ------------------------------------------------ */
 98static struct mtd_info *board_mtd;
 99static void __iomem *bcm_umi_io_base;
100static void *virtPtr;
101static dma_addr_t physPtr;
102static struct completion nand_comp;
103
104/* ---- Private Functions ------------------------------------------------ */
105#if NAND_ECC_BCH
106#include "bcm_umi_bch.c"
107#else
108#include "bcm_umi_hamming.c"
109#endif
110
111#if USE_DMA
112
113/* Handler called when the DMA finishes. */
114static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
115{
116	complete(&nand_comp);
117}
118
119static int nand_dma_init(void)
120{
121	int rc;
122
123	rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
124		nand_dma_handler, NULL);
125	if (rc != 0) {
126		printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
127		return rc;
128	}
129
130	virtPtr =
131	    dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
132	if (virtPtr == NULL) {
133		printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
134		return -ENOMEM;
135	}
136
137	return 0;
138}
139
140static void nand_dma_term(void)
141{
142	if (virtPtr != NULL)
143		dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
144}
145
146static void nand_dma_read(void *buf, int len)
147{
148	int offset = 0;
149	int tmp_len = 0;
150	int len_left = len;
151	DMA_Handle_t hndl;
152
153	if (virtPtr == NULL)
154		panic("nand_dma_read: virtPtr == NULL\n");
155
156	if ((void *)physPtr == NULL)
157		panic("nand_dma_read: physPtr == NULL\n");
158
159	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
160	if (hndl < 0) {
161		printk(KERN_ERR
162		       "nand_dma_read: unable to allocate dma channel: %d\n",
163		       (int)hndl);
164		panic("\n");
165	}
166
167	while (len_left > 0) {
168		if (len_left > DMA_MAX_LEN) {
169			tmp_len = DMA_MAX_LEN;
170			len_left -= DMA_MAX_LEN;
171		} else {
172			tmp_len = len_left;
173			len_left = 0;
174		}
175
176		init_completion(&nand_comp);
177		dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
178					physPtr + offset, tmp_len);
179		wait_for_completion(&nand_comp);
180
181		offset += tmp_len;
182	}
183
184	dma_free_channel(hndl);
185
186	if (buf != NULL)
187		memcpy(buf, virtPtr, len);
188}
189
190static void nand_dma_write(const void *buf, int len)
191{
192	int offset = 0;
193	int tmp_len = 0;
194	int len_left = len;
195	DMA_Handle_t hndl;
196
197	if (buf == NULL)
198		panic("nand_dma_write: buf == NULL\n");
199
200	if (virtPtr == NULL)
201		panic("nand_dma_write: virtPtr == NULL\n");
202
203	if ((void *)physPtr == NULL)
204		panic("nand_dma_write: physPtr == NULL\n");
205
206	memcpy(virtPtr, buf, len);
207
208
209	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
210	if (hndl < 0) {
211		printk(KERN_ERR
212		       "nand_dma_write: unable to allocate dma channel: %d\n",
213		       (int)hndl);
214		panic("\n");
215	}
216
217	while (len_left > 0) {
218		if (len_left > DMA_MAX_LEN) {
219			tmp_len = DMA_MAX_LEN;
220			len_left -= DMA_MAX_LEN;
221		} else {
222			tmp_len = len_left;
223			len_left = 0;
224		}
225
226		init_completion(&nand_comp);
227		dma_transfer_mem_to_mem(hndl, physPtr + offset,
228					REG_NAND_DATA_PADDR, tmp_len);
229		wait_for_completion(&nand_comp);
230
231		offset += tmp_len;
232	}
233
234	dma_free_channel(hndl);
235}
236
237#endif
238
239static int nand_dev_ready(struct mtd_info *mtd)
240{
241	return nand_bcm_umi_dev_ready();
242}
243
244/****************************************************************************
245*
246*  bcm_umi_nand_inithw
247*
248*   This routine does the necessary hardware (board-specific)
249*   initializations.  This includes setting up the timings, etc.
250*
251***************************************************************************/
252int bcm_umi_nand_inithw(void)
253{
254	/* Configure nand timing parameters */
255	REG_UMI_NAND_TCR &= ~0x7ffff;
256	REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
257
258#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
259	/* enable software control of CS */
260	REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
261#endif
262
263	/* keep NAND chip select asserted */
264	REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
265
266	REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
267	/* enable writes to flash */
268	REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
269
270	writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
271	nand_bcm_umi_wait_till_ready();
272
273#if NAND_ECC_BCH
274	nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
275#endif
276
277	return 0;
278}
279
280/* Used to turn latch the proper register for access. */
281static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
282				   unsigned int ctrl)
283{
284	/* send command to hardware */
285	struct nand_chip *chip = mtd->priv;
286	if (ctrl & NAND_CTRL_CHANGE) {
287		if (ctrl & NAND_CLE) {
288			chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
289			goto CMD;
290		}
291		if (ctrl & NAND_ALE) {
292			chip->IO_ADDR_W =
293			    bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
294			goto CMD;
295		}
296		chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
297	}
298
299CMD:
300	/* Send command to chip directly */
301	if (cmd != NAND_CMD_NONE)
302		writeb(cmd, chip->IO_ADDR_W);
303}
304
305static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
306				   int len)
307{
308	if (USE_DIRECT_IO(len)) {
309		/* Do it the old way if the buffer is small or too large.
310		 * Probably quicker than starting and checking dma. */
311		int i;
312		struct nand_chip *this = mtd->priv;
313
314		for (i = 0; i < len; i++)
315			writeb(buf[i], this->IO_ADDR_W);
316	}
317#if USE_DMA
318	else
319		nand_dma_write(buf, len);
320#endif
321}
322
323static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
324{
325	if (USE_DIRECT_IO(len)) {
326		int i;
327		struct nand_chip *this = mtd->priv;
328
329		for (i = 0; i < len; i++)
330			buf[i] = readb(this->IO_ADDR_R);
331	}
332#if USE_DMA
333	else
334		nand_dma_read(buf, len);
335#endif
336}
337
338static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
339static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
340				   int len)
341{
342	/*
343	 * Try to readback page with ECC correction. This is necessary
344	 * for MLC parts which may have permanently stuck bits.
345	 */
346	struct nand_chip *chip = mtd->priv;
347	int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
348	if (ret < 0)
349		return -EFAULT;
350	else {
351		if (memcmp(readbackbuf, buf, len) == 0)
352			return 0;
353
354		return -EFAULT;
355	}
356	return 0;
357}
358
359static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
360{
361	struct nand_chip *this;
362	struct resource *r;
363	int err = 0;
364
365	printk(gBanner);
366
367	/* Allocate memory for MTD device structure and private data */
368	board_mtd =
369	    kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
370		    GFP_KERNEL);
371	if (!board_mtd) {
372		printk(KERN_WARNING
373		       "Unable to allocate NAND MTD device structure.\n");
374		return -ENOMEM;
375	}
376
377	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
378
379	if (!r)
380		return -ENXIO;
381
382	/* map physical address */
383	bcm_umi_io_base = ioremap(r->start, r->end - r->start + 1);
384
385	if (!bcm_umi_io_base) {
386		printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
387		kfree(board_mtd);
388		return -EIO;
389	}
390
391	/* Get pointer to private data */
392	this = (struct nand_chip *)(&board_mtd[1]);
393
394	/* Initialize structures */
395	memset((char *)board_mtd, 0, sizeof(struct mtd_info));
396	memset((char *)this, 0, sizeof(struct nand_chip));
397
398	/* Link the private data with the MTD structure */
399	board_mtd->priv = this;
400
401	/* Initialize the NAND hardware.  */
402	if (bcm_umi_nand_inithw() < 0) {
403		printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
404		iounmap(bcm_umi_io_base);
405		kfree(board_mtd);
406		return -EIO;
407	}
408
409	/* Set address of NAND IO lines */
410	this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
411	this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
412
413	/* Set command delay time, see datasheet for correct value */
414	this->chip_delay = 0;
415	/* Assign the device ready function, if available */
416	this->dev_ready = nand_dev_ready;
417	this->options = 0;
418
419	this->write_buf = bcm_umi_nand_write_buf;
420	this->read_buf = bcm_umi_nand_read_buf;
421	this->verify_buf = bcm_umi_nand_verify_buf;
422
423	this->cmd_ctrl = bcm_umi_nand_hwcontrol;
424	this->ecc.mode = NAND_ECC_HW;
425	this->ecc.size = 512;
426	this->ecc.bytes = NAND_ECC_NUM_BYTES;
427#if NAND_ECC_BCH
428	this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
429	this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
430#else
431	this->ecc.correct = nand_correct_data512;
432	this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
433	this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
434#endif
435
436#if USE_DMA
437	err = nand_dma_init();
438	if (err != 0)
439		return err;
440#endif
441
442	/* Figure out the size of the device that we have.
443	 * We need to do this to figure out which ECC
444	 * layout we'll be using.
445	 */
446
447	err = nand_scan_ident(board_mtd, 1, NULL);
448	if (err) {
449		printk(KERN_ERR "nand_scan failed: %d\n", err);
450		iounmap(bcm_umi_io_base);
451		kfree(board_mtd);
452		return err;
453	}
454
455	/* Now that we know the nand size, we can setup the ECC layout */
456
457	switch (board_mtd->writesize) {	/* writesize is the pagesize */
458	case 4096:
459		this->ecc.layout = &nand_hw_eccoob_4096;
460		break;
461	case 2048:
462		this->ecc.layout = &nand_hw_eccoob_2048;
463		break;
464	case 512:
465		this->ecc.layout = &nand_hw_eccoob_512;
466		break;
467	default:
468		{
469			printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
470					 board_mtd->writesize);
471			return -EINVAL;
472		}
473	}
474
475#if NAND_ECC_BCH
476	if (board_mtd->writesize > 512) {
477		if (this->options & NAND_USE_FLASH_BBT)
478			largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
479		this->badblock_pattern = &largepage_bbt;
480	}
481#endif
482
483	/* Now finish off the scan, now that ecc.layout has been initialized. */
484
485	err = nand_scan_tail(board_mtd);
486	if (err) {
487		printk(KERN_ERR "nand_scan failed: %d\n", err);
488		iounmap(bcm_umi_io_base);
489		kfree(board_mtd);
490		return err;
491	}
492
493	/* Register the partitions */
494	{
495		int nr_partitions;
496		struct mtd_partition *partition_info;
497
498		board_mtd->name = "bcm_umi-nand";
499		nr_partitions =
500		    parse_mtd_partitions(board_mtd, part_probes,
501					 &partition_info, 0);
502
503		if (nr_partitions <= 0) {
504			printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n",
505			       nr_partitions);
506			iounmap(bcm_umi_io_base);
507			kfree(board_mtd);
508			return -EIO;
509		}
510		mtd_device_register(board_mtd, partition_info, nr_partitions);
511	}
512
513	/* Return happy */
514	return 0;
515}
516
517static int bcm_umi_nand_remove(struct platform_device *pdev)
518{
519#if USE_DMA
520	nand_dma_term();
521#endif
522
523	/* Release resources, unregister device */
524	nand_release(board_mtd);
525
526	/* unmap physical address */
527	iounmap(bcm_umi_io_base);
528
529	/* Free the MTD device structure */
530	kfree(board_mtd);
531
532	return 0;
533}
534
535#ifdef CONFIG_PM
536static int bcm_umi_nand_suspend(struct platform_device *pdev,
537				pm_message_t state)
538{
539	printk(KERN_ERR "MTD NAND suspend is being called\n");
540	return 0;
541}
542
543static int bcm_umi_nand_resume(struct platform_device *pdev)
544{
545	printk(KERN_ERR "MTD NAND resume is being called\n");
546	return 0;
547}
548#else
549#define bcm_umi_nand_suspend   NULL
550#define bcm_umi_nand_resume    NULL
551#endif
552
553static struct platform_driver nand_driver = {
554	.driver = {
555		   .name = "bcm-nand",
556		   .owner = THIS_MODULE,
557		   },
558	.probe = bcm_umi_nand_probe,
559	.remove = bcm_umi_nand_remove,
560	.suspend = bcm_umi_nand_suspend,
561	.resume = bcm_umi_nand_resume,
562};
563
564static int __init nand_init(void)
565{
566	return platform_driver_register(&nand_driver);
567}
568
569static void __exit nand_exit(void)
570{
571	platform_driver_unregister(&nand_driver);
572}
573
574module_init(nand_init);
575module_exit(nand_exit);
576
577MODULE_LICENSE("GPL");
578MODULE_AUTHOR("Broadcom");
579MODULE_DESCRIPTION("BCM UMI MTD NAND driver");