/contrib/ntp/clockstuff/chutest.c
https://bitbucket.org/freebsd/freebsd-head/ · C · 816 lines · 539 code · 81 blank · 196 comment · 102 complexity · 489ad21b3b7857b601ec25c02fcf63c7 MD5 · raw file
- /* chutest.c,v 3.1 1993/07/06 01:05:21 jbj Exp
- * chutest - test the CHU clock
- */
- #include <stdio.h>
- #include <sys/types.h>
- #include <sys/socket.h>
- #include <netinet/in.h>
- #include <sys/ioctl.h>
- #include <sys/time.h>
- #include <sys/file.h>
- #include <sgtty.h>
- #include "../include/ntp_fp.h"
- #include "../include/ntp.h"
- #include "../include/ntp_unixtime.h"
- #ifdef CHULDISC
- #ifdef STREAM
- # ifdef HAVE_SYS_CHUDEFS_H
- #include <sys/chudefs.h>
- #endif
- #include <stropts.h>
- #endif
- #endif
- #ifdef CHULDISC
- # ifdef HAVE_SYS_CHUDEFS_H
- #include <sys/chudefs.h>
- #endif
- #endif
- #ifndef CHULDISC
- #ifndef STREAM
- #define NCHUCHARS (10)
- struct chucode {
- u_char codechars[NCHUCHARS]; /* code characters */
- u_char ncodechars; /* number of code characters */
- u_char chustatus; /* not used currently */
- struct timeval codetimes[NCHUCHARS]; /* arrival times */
- };
- #endif
- #endif
- #define STREQ(a, b) (*(a) == *(b) && strcmp((a), (b)) == 0)
- char *progname;
- int debug;
- int dofilter = 0; /* set to 1 when we should run filter algorithm */
- int showtimes = 0; /* set to 1 when we should show char arrival times */
- int doprocess = 0; /* set to 1 when we do processing analogous to driver */
- #ifdef CHULDISC
- int usechuldisc = 0; /* set to 1 when CHU line discipline should be used */
- #endif
- #ifdef STREAM
- int usechuldisc = 0; /* set to 1 when CHU line discipline should be used */
- #endif
- struct timeval lasttv;
- struct chucode chudata;
- extern u_long ustotslo[];
- extern u_long ustotsmid[];
- extern u_long ustotshi[];
- /*
- * main - parse arguments and handle options
- */
- int
- main(
- int argc,
- char *argv[]
- )
- {
- int c;
- int errflg = 0;
- extern int ntp_optind;
- extern char *ntp_optarg;
- void init_chu();
- progname = argv[0];
- while ((c = ntp_getopt(argc, argv, "cdfpt")) != EOF)
- switch (c) {
- case 'c':
- #ifdef STREAM
- usechuldisc = 1;
- break;
- #endif
- #ifdef CHULDISC
- usechuldisc = 1;
- break;
- #endif
- #ifndef STREAM
- #ifndef CHULDISC
- (void) fprintf(stderr,
- "%s: CHU line discipline not available on this machine\n",
- progname);
- exit(2);
- #endif
- #endif
- case 'd':
- ++debug;
- break;
- case 'f':
- dofilter = 1;
- break;
- case 'p':
- doprocess = 1;
- case 't':
- showtimes = 1;
- break;
- default:
- errflg++;
- break;
- }
- if (errflg || ntp_optind+1 != argc) {
- #ifdef STREAM
- (void) fprintf(stderr, "usage: %s [-dft] tty_device\n",
- progname);
- #endif
- #ifdef CHULDISC
- (void) fprintf(stderr, "usage: %s [-dft] tty_device\n",
- progname);
- #endif
- #ifndef STREAM
- #ifndef CHULDISC
- (void) fprintf(stderr, "usage: %s [-cdft] tty_device\n",
- progname);
- #endif
- #endif
- exit(2);
- }
- (void) gettimeofday(&lasttv, (struct timezone *)0);
- c = openterm(argv[ntp_optind]);
- init_chu();
- #ifdef STREAM
- if (usechuldisc)
- process_ldisc(c);
- else
- #endif
- #ifdef CHULDISC
- if (usechuldisc)
- process_ldisc(c);
- else
- #endif
- process_raw(c);
- /*NOTREACHED*/
- }
- /*
- * openterm - open a port to the CHU clock
- */
- int
- openterm(
- char *dev
- )
- {
- int s;
- struct sgttyb ttyb;
- if (debug)
- (void) fprintf(stderr, "Doing open...");
- if ((s = open(dev, O_RDONLY, 0777)) < 0)
- error("open(%s)", dev, "");
- if (debug)
- (void) fprintf(stderr, "open okay\n");
- if (debug)
- (void) fprintf(stderr, "Setting exclusive use...");
- if (ioctl(s, TIOCEXCL, (char *)0) < 0)
- error("ioctl(TIOCEXCL)", "", "");
- if (debug)
- (void) fprintf(stderr, "done\n");
-
- ttyb.sg_ispeed = ttyb.sg_ospeed = B300;
- ttyb.sg_erase = ttyb.sg_kill = 0;
- ttyb.sg_flags = EVENP|ODDP|RAW;
- if (debug)
- (void) fprintf(stderr, "Setting baud rate et al...");
- if (ioctl(s, TIOCSETP, (char *)&ttyb) < 0)
- error("ioctl(TIOCSETP, raw)", "", "");
- if (debug)
- (void) fprintf(stderr, "done\n");
- #ifdef CHULDISC
- if (usechuldisc) {
- int ldisc;
- if (debug)
- (void) fprintf(stderr, "Switching to CHU ldisc...");
- ldisc = CHULDISC;
- if (ioctl(s, TIOCSETD, (char *)&ldisc) < 0)
- error("ioctl(TIOCSETD, CHULDISC)", "", "");
- if (debug)
- (void) fprintf(stderr, "okay\n");
- }
- #endif
- #ifdef STREAM
- if (usechuldisc) {
- if (debug)
- (void) fprintf(stderr, "Poping off streams...");
- while (ioctl(s, I_POP, 0) >=0) ;
- if (debug)
- (void) fprintf(stderr, "okay\n");
- if (debug)
- (void) fprintf(stderr, "Pushing CHU stream...");
- if (ioctl(s, I_PUSH, "chu") < 0)
- error("ioctl(I_PUSH, \"chu\")", "", "");
- if (debug)
- (void) fprintf(stderr, "okay\n");
- }
- #endif
- return s;
- }
- /*
- * process_raw - process characters in raw mode
- */
- int
- process_raw(
- int s
- )
- {
- u_char c;
- int n;
- struct timeval tv;
- struct timeval difftv;
- while ((n = read(s, &c, sizeof(char))) > 0) {
- (void) gettimeofday(&tv, (struct timezone *)0);
- if (dofilter)
- raw_filter((unsigned int)c, &tv);
- else {
- difftv.tv_sec = tv.tv_sec - lasttv.tv_sec;
- difftv.tv_usec = tv.tv_usec - lasttv.tv_usec;
- if (difftv.tv_usec < 0) {
- difftv.tv_sec--;
- difftv.tv_usec += 1000000;
- }
- (void) printf("%02x\t%lu.%06lu\t%lu.%06lu\n",
- c, tv.tv_sec, tv.tv_usec, difftv.tv_sec,
- difftv.tv_usec);
- lasttv = tv;
- }
- }
- if (n == 0) {
- (void) fprintf(stderr, "%s: zero returned on read\n", progname);
- exit(1);
- } else
- error("read()", "", "");
- }
- /*
- * raw_filter - run the line discipline filter over raw data
- */
- int
- raw_filter(
- unsigned int c,
- struct timeval *tv
- )
- {
- static struct timeval diffs[10] = { 0 };
- struct timeval diff;
- l_fp ts;
- void chufilter();
- if ((c & 0xf) > 9 || ((c>>4)&0xf) > 9) {
- if (debug)
- (void) fprintf(stderr,
- "character %02x failed BCD test\n");
- chudata.ncodechars = 0;
- return;
- }
- if (chudata.ncodechars > 0) {
- diff.tv_sec = tv->tv_sec
- - chudata.codetimes[chudata.ncodechars].tv_sec;
- diff.tv_usec = tv->tv_usec
- - chudata.codetimes[chudata.ncodechars].tv_usec;
- if (diff.tv_usec < 0) {
- diff.tv_sec--;
- diff.tv_usec += 1000000;
- } /*
- if (diff.tv_sec != 0 || diff.tv_usec > 900000) {
- if (debug)
- (void) fprintf(stderr,
- "character %02x failed time test\n");
- chudata.ncodechars = 0;
- return;
- } */
- }
- chudata.codechars[chudata.ncodechars] = c;
- chudata.codetimes[chudata.ncodechars] = *tv;
- if (chudata.ncodechars > 0)
- diffs[chudata.ncodechars] = diff;
- if (++chudata.ncodechars == 10) {
- if (doprocess) {
- TVTOTS(&chudata.codetimes[NCHUCHARS-1], &ts);
- ts.l_ui += JAN_1970;
- chufilter(&chudata, &chudata.codetimes[NCHUCHARS-1]);
- } else {
- register int i;
- for (i = 0; i < chudata.ncodechars; i++) {
- (void) printf("%x%x\t%lu.%06lu\t%lu.%06lu\n",
- chudata.codechars[i] & 0xf,
- (chudata.codechars[i] >>4 ) & 0xf,
- chudata.codetimes[i].tv_sec,
- chudata.codetimes[i].tv_usec,
- diffs[i].tv_sec, diffs[i].tv_usec);
- }
- }
- chudata.ncodechars = 0;
- }
- }
- /* #ifdef CHULDISC*/
- /*
- * process_ldisc - process line discipline
- */
- int
- process_ldisc(
- int s
- )
- {
- struct chucode chu;
- int n;
- register int i;
- struct timeval diff;
- l_fp ts;
- void chufilter();
- while ((n = read(s, (char *)&chu, sizeof chu)) > 0) {
- if (n != sizeof chu) {
- (void) fprintf(stderr, "Expected %d, got %d\n",
- sizeof chu, n);
- continue;
- }
- if (doprocess) {
- TVTOTS(&chu.codetimes[NCHUCHARS-1], &ts);
- ts.l_ui += JAN_1970;
- chufilter(&chu, &ts);
- } else {
- for (i = 0; i < NCHUCHARS; i++) {
- if (i == 0)
- diff.tv_sec = diff.tv_usec = 0;
- else {
- diff.tv_sec = chu.codetimes[i].tv_sec
- - chu.codetimes[i-1].tv_sec;
- diff.tv_usec = chu.codetimes[i].tv_usec
- - chu.codetimes[i-1].tv_usec;
- if (diff.tv_usec < 0) {
- diff.tv_sec--;
- diff.tv_usec += 1000000;
- }
- }
- (void) printf("%x%x\t%lu.%06lu\t%lu.%06lu\n",
- chu.codechars[i] & 0xf, (chu.codechars[i]>>4)&0xf,
- chu.codetimes[i].tv_sec, chu.codetimes[i].tv_usec,
- diff.tv_sec, diff.tv_usec);
- }
- }
- }
- if (n == 0) {
- (void) fprintf(stderr, "%s: zero returned on read\n", progname);
- exit(1);
- } else
- error("read()", "", "");
- }
- /*#endif*/
- /*
- * error - print an error message
- */
- void
- error(
- char *fmt,
- char *s1,
- char *s2
- )
- {
- (void) fprintf(stderr, "%s: ", progname);
- (void) fprintf(stderr, fmt, s1, s2);
- (void) fprintf(stderr, ": ");
- perror("");
- exit(1);
- }
- /*
- * Definitions
- */
- #define MAXUNITS 4 /* maximum number of CHU units permitted */
- #define CHUDEV "/dev/chu%d" /* device we open. %d is unit number */
- #define NCHUCODES 9 /* expect 9 CHU codes per minute */
- /*
- * When CHU is operating optimally we want the primary clock distance
- * to come out at 300 ms. Thus, peer.distance in the CHU peer structure
- * is set to 290 ms and we compute delays which are at least 10 ms long.
- * The following are 290 ms and 10 ms expressed in u_fp format
- */
- #define CHUDISTANCE 0x00004a3d
- #define CHUBASEDELAY 0x0000028f
- /*
- * To compute a quality for the estimate (a pseudo delay) we add a
- * fixed 10 ms for each missing code in the minute and add to this
- * the sum of the differences between the remaining offsets and the
- * estimated sample offset.
- */
- #define CHUDELAYPENALTY 0x0000028f
- /*
- * Other constant stuff
- */
- #define CHUPRECISION (-9) /* what the heck */
- #define CHUREFID "CHU\0"
- /*
- * Default fudge factors
- */
- #define DEFPROPDELAY 0x00624dd3 /* 0.0015 seconds, 1.5 ms */
- #define DEFFILTFUDGE 0x000d1b71 /* 0.0002 seconds, 200 us */
- /*
- * Hacks to avoid excercising the multiplier. I have no pride.
- */
- #define MULBY10(x) (((x)<<3) + ((x)<<1))
- #define MULBY60(x) (((x)<<6) - ((x)<<2)) /* watch overflow */
- #define MULBY24(x) (((x)<<4) + ((x)<<3))
- /*
- * Constants for use when multiplying by 0.1. ZEROPTONE is 0.1
- * as an l_fp fraction, NZPOBITS is the number of significant bits
- * in ZEROPTONE.
- */
- #define ZEROPTONE 0x1999999a
- #define NZPOBITS 29
- /*
- * The CHU table. This gives the expected time of arrival of each
- * character after the on-time second and is computed as follows:
- * The CHU time code is sent at 300 bps. Your average UART will
- * synchronize at the edge of the start bit and will consider the
- * character complete at the center of the first stop bit, i.e.
- * 0.031667 ms later. Thus the expected time of each interrupt
- * is the start bit time plus 0.031667 seconds. These times are
- * in chutable[]. To this we add such things as propagation delay
- * and delay fudge factor.
- */
- #define CHARDELAY 0x081b4e80
- static u_long chutable[NCHUCHARS] = {
- 0x2147ae14 + CHARDELAY, /* 0.130 (exactly) */
- 0x2ac08312 + CHARDELAY, /* 0.167 (exactly) */
- 0x34395810 + CHARDELAY, /* 0.204 (exactly) */
- 0x3db22d0e + CHARDELAY, /* 0.241 (exactly) */
- 0x472b020c + CHARDELAY, /* 0.278 (exactly) */
- 0x50a3d70a + CHARDELAY, /* 0.315 (exactly) */
- 0x5a1cac08 + CHARDELAY, /* 0.352 (exactly) */
- 0x63958106 + CHARDELAY, /* 0.389 (exactly) */
- 0x6d0e5604 + CHARDELAY, /* 0.426 (exactly) */
- 0x76872b02 + CHARDELAY, /* 0.463 (exactly) */
- };
- /*
- * Keep the fudge factors separately so they can be set even
- * when no clock is configured.
- */
- static l_fp propagation_delay;
- static l_fp fudgefactor;
- static l_fp offset_fudge;
- /*
- * We keep track of the start of the year, watching for changes.
- * We also keep track of whether the year is a leap year or not.
- * All because stupid CHU doesn't include the year in the time code.
- */
- static u_long yearstart;
- /*
- * Imported from the timer module
- */
- extern u_long current_time;
- extern struct event timerqueue[];
- /*
- * Time conversion tables imported from the library
- */
- extern u_long ustotslo[];
- extern u_long ustotsmid[];
- extern u_long ustotshi[];
- /*
- * init_chu - initialize internal chu driver data
- */
- void
- init_chu(void)
- {
- /*
- * Initialize fudge factors to default.
- */
- propagation_delay.l_ui = 0;
- propagation_delay.l_uf = DEFPROPDELAY;
- fudgefactor.l_ui = 0;
- fudgefactor.l_uf = DEFFILTFUDGE;
- offset_fudge = propagation_delay;
- L_ADD(&offset_fudge, &fudgefactor);
- yearstart = 0;
- }
- void
- chufilter(
- struct chucode *chuc,
- l_fp *rtime
- )
- {
- register int i;
- register u_long date_ui;
- register u_long tmp;
- register u_char *code;
- int isneg;
- int imin;
- int imax;
- u_long reftime;
- l_fp off[NCHUCHARS];
- l_fp ts;
- int day, hour, minute, second;
- static u_char lastcode[NCHUCHARS];
- extern u_long calyearstart();
- extern char *mfptoa();
- void chu_process();
- extern char *prettydate();
- /*
- * We'll skip the checks made in the kernel, but assume they've
- * been done. This means that all characters are BCD and
- * the intercharacter spacing isn't unreasonable.
- */
- /*
- * print the code
- */
- for (i = 0; i < NCHUCHARS; i++)
- printf("%c%c", (chuc->codechars[i] & 0xf) + '0',
- ((chuc->codechars[i]>>4) & 0xf) + '0');
- printf("\n");
- /*
- * Format check. Make sure the two halves match.
- */
- for (i = 0; i < NCHUCHARS/2; i++)
- if (chuc->codechars[i] != chuc->codechars[i+(NCHUCHARS/2)]) {
- (void) printf("Bad format, halves don't match\n");
- return;
- }
-
- /*
- * Break out the code into the BCD nibbles. Only need to fiddle
- * with the first half since both are identical. Note the first
- * BCD character is the low order nibble, the second the high order.
- */
- code = lastcode;
- for (i = 0; i < NCHUCHARS/2; i++) {
- *code++ = chuc->codechars[i] & 0xf;
- *code++ = (chuc->codechars[i] >> 4) & 0xf;
- }
- /*
- * If the first nibble isn't a 6, we're up the creek
- */
- code = lastcode;
- if (*code++ != 6) {
- (void) printf("Bad format, no 6 at start\n");
- return;
- }
- /*
- * Collect the day, the hour, the minute and the second.
- */
- day = *code++;
- day = MULBY10(day) + *code++;
- day = MULBY10(day) + *code++;
- hour = *code++;
- hour = MULBY10(hour) + *code++;
- minute = *code++;
- minute = MULBY10(minute) + *code++;
- second = *code++;
- second = MULBY10(second) + *code++;
- /*
- * Sanity check the day and time. Note that this
- * only occurs on the 31st through the 39th second
- * of the minute.
- */
- if (day < 1 || day > 366
- || hour > 23 || minute > 59
- || second < 31 || second > 39) {
- (void) printf("Failed date sanity check: %d %d %d %d\n",
- day, hour, minute, second);
- return;
- }
- /*
- * Compute seconds into the year.
- */
- tmp = (u_long)(MULBY24((day-1)) + hour); /* hours */
- tmp = MULBY60(tmp) + (u_long)minute; /* minutes */
- tmp = MULBY60(tmp) + (u_long)second; /* seconds */
- /*
- * Now the fun begins. We demand that the received time code
- * be within CLOCK_WAYTOOBIG of the receive timestamp, but
- * there is uncertainty about the year the timestamp is in.
- * Use the current year start for the first check, this should
- * work most of the time.
- */
- date_ui = tmp + yearstart;
- if (date_ui < (rtime->l_ui + CLOCK_WAYTOOBIG)
- && date_ui > (rtime->l_ui - CLOCK_WAYTOOBIG))
- goto codeokay; /* looks good */
- /*
- * Trouble. Next check is to see if the year rolled over and, if
- * so, try again with the new year's start.
- */
- date_ui = calyearstart(rtime->l_ui);
- if (date_ui != yearstart) {
- yearstart = date_ui;
- date_ui += tmp;
- (void) printf("time %u, code %u, difference %d\n",
- date_ui, rtime->l_ui, (long)date_ui-(long)rtime->l_ui);
- if (date_ui < (rtime->l_ui + CLOCK_WAYTOOBIG)
- && date_ui > (rtime->l_ui - CLOCK_WAYTOOBIG))
- goto codeokay; /* okay this time */
- }
- ts.l_uf = 0;
- ts.l_ui = yearstart;
- printf("yearstart %s\n", prettydate(&ts));
- printf("received %s\n", prettydate(rtime));
- ts.l_ui = date_ui;
- printf("date_ui %s\n", prettydate(&ts));
- /*
- * Here we know the year start matches the current system
- * time. One remaining possibility is that the time code
- * is in the year previous to that of the system time. This
- * is only worth checking if the receive timestamp is less
- * than CLOCK_WAYTOOBIG seconds into the new year.
- */
- if ((rtime->l_ui - yearstart) < CLOCK_WAYTOOBIG) {
- date_ui = tmp + calyearstart(yearstart - CLOCK_WAYTOOBIG);
- if ((rtime->l_ui - date_ui) < CLOCK_WAYTOOBIG)
- goto codeokay;
- }
- /*
- * One last possibility is that the time stamp is in the year
- * following the year the system is in. Try this one before
- * giving up.
- */
- date_ui = tmp + calyearstart(yearstart + (400*24*60*60)); /* 400 days */
- if ((date_ui - rtime->l_ui) >= CLOCK_WAYTOOBIG) {
- printf("Date hopelessly off\n");
- return; /* hopeless, let it sync to other peers */
- }
- codeokay:
- reftime = date_ui;
- /*
- * We've now got the integral seconds part of the time code (we hope).
- * The fractional part comes from the table. We next compute
- * the offsets for each character.
- */
- for (i = 0; i < NCHUCHARS; i++) {
- register u_long tmp2;
- off[i].l_ui = date_ui;
- off[i].l_uf = chutable[i];
- tmp = chuc->codetimes[i].tv_sec + JAN_1970;
- TVUTOTSF(chuc->codetimes[i].tv_usec, tmp2);
- M_SUB(off[i].l_ui, off[i].l_uf, tmp, tmp2);
- }
- /*
- * Here is a *big* problem. What one would normally
- * do here on a machine with lots of clock bits (say
- * a Vax or the gizmo board) is pick the most positive
- * offset and the estimate, since this is the one that
- * is most likely suffered the smallest interrupt delay.
- * The trouble is that the low order clock bit on an IBM
- * RT, which is the machine I had in mind when doing this,
- * ticks at just under the millisecond mark. This isn't
- * precise enough. What we can do to improve this is to
- * average all 10 samples and rely on the second level
- * filtering to pick the least delayed estimate. Trouble
- * is, this means we have to divide a 64 bit fixed point
- * number by 10, a procedure which really sucks. Oh, well.
- * First compute the sum.
- */
- date_ui = 0;
- tmp = 0;
- for (i = 0; i < NCHUCHARS; i++)
- M_ADD(date_ui, tmp, off[i].l_ui, off[i].l_uf);
- if (M_ISNEG(date_ui, tmp))
- isneg = 1;
- else
- isneg = 0;
-
- /*
- * Here is a multiply-by-0.1 optimization that should apply
- * just about everywhere. If the magnitude of the sum
- * is less than 9 we don't have to worry about overflow
- * out of a 64 bit product, even after rounding.
- */
- if (date_ui < 9 || date_ui > 0xfffffff7) {
- register u_long prod_ui;
- register u_long prod_uf;
- prod_ui = prod_uf = 0;
- /*
- * This code knows the low order bit in 0.1 is zero
- */
- for (i = 1; i < NZPOBITS; i++) {
- M_LSHIFT(date_ui, tmp);
- if (ZEROPTONE & (1<<i))
- M_ADD(prod_ui, prod_uf, date_ui, tmp);
- }
- /*
- * Done, round it correctly. Prod_ui contains the
- * fraction.
- */
- if (prod_uf & 0x80000000)
- prod_ui++;
- if (isneg)
- date_ui = 0xffffffff;
- else
- date_ui = 0;
- tmp = prod_ui;
- /*
- * date_ui is integral part, tmp is fraction.
- */
- } else {
- register u_long prod_ovr;
- register u_long prod_ui;
- register u_long prod_uf;
- register u_long highbits;
- prod_ovr = prod_ui = prod_uf = 0;
- if (isneg)
- highbits = 0xffffffff; /* sign extend */
- else
- highbits = 0;
- /*
- * This code knows the low order bit in 0.1 is zero
- */
- for (i = 1; i < NZPOBITS; i++) {
- M_LSHIFT3(highbits, date_ui, tmp);
- if (ZEROPTONE & (1<<i))
- M_ADD3(prod_ovr, prod_uf, prod_ui,
- highbits, date_ui, tmp);
- }
- if (prod_uf & 0x80000000)
- M_ADDUF(prod_ovr, prod_ui, (u_long)1);
- date_ui = prod_ovr;
- tmp = prod_ui;
- }
- /*
- * At this point we have the mean offset, with the integral
- * part in date_ui and the fractional part in tmp. Store
- * it in the structure.
- */
- /*
- * Add in fudge factor.
- */
- M_ADD(date_ui, tmp, offset_fudge.l_ui, offset_fudge.l_uf);
- /*
- * Find the minimun and maximum offset
- */
- imin = imax = 0;
- for (i = 1; i < NCHUCHARS; i++) {
- if (L_ISGEQ(&off[i], &off[imax])) {
- imax = i;
- } else if (L_ISGEQ(&off[imin], &off[i])) {
- imin = i;
- }
- }
- L_ADD(&off[imin], &offset_fudge);
- if (imin != imax)
- L_ADD(&off[imax], &offset_fudge);
- (void) printf("mean %s, min %s, max %s\n",
- mfptoa(date_ui, tmp, 8), lfptoa(&off[imin], 8),
- lfptoa(&off[imax], 8));
- }