/drivers/hwmon/lm85.c
C | 1632 lines | 1260 code | 227 blank | 145 comment | 120 complexity | 2fb4fce73c09a5237d136ec326aad55c MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
1/* 2 lm85.c - Part of lm_sensors, Linux kernel modules for hardware 3 monitoring 4 Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> 6 Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de> 7 Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com> 8 Copyright (C) 2007--2009 Jean Delvare <khali@linux-fr.org> 9 10 Chip details at <http://www.national.com/ds/LM/LM85.pdf> 11 12 This program is free software; you can redistribute it and/or modify 13 it under the terms of the GNU General Public License as published by 14 the Free Software Foundation; either version 2 of the License, or 15 (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, 18 but WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 GNU General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25*/ 26 27#include <linux/module.h> 28#include <linux/init.h> 29#include <linux/slab.h> 30#include <linux/jiffies.h> 31#include <linux/i2c.h> 32#include <linux/hwmon.h> 33#include <linux/hwmon-vid.h> 34#include <linux/hwmon-sysfs.h> 35#include <linux/err.h> 36#include <linux/mutex.h> 37 38/* Addresses to scan */ 39static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; 40 41enum chips { 42 any_chip, lm85b, lm85c, 43 adm1027, adt7463, adt7468, 44 emc6d100, emc6d102, emc6d103, emc6d103s 45}; 46 47/* The LM85 registers */ 48 49#define LM85_REG_IN(nr) (0x20 + (nr)) 50#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2) 51#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2) 52 53#define LM85_REG_TEMP(nr) (0x25 + (nr)) 54#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2) 55#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2) 56 57/* Fan speeds are LSB, MSB (2 bytes) */ 58#define LM85_REG_FAN(nr) (0x28 + (nr) * 2) 59#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2) 60 61#define LM85_REG_PWM(nr) (0x30 + (nr)) 62 63#define LM85_REG_COMPANY 0x3e 64#define LM85_REG_VERSTEP 0x3f 65 66#define ADT7468_REG_CFG5 0x7c 67#define ADT7468_OFF64 (1 << 0) 68#define ADT7468_HFPWM (1 << 1) 69#define IS_ADT7468_OFF64(data) \ 70 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64)) 71#define IS_ADT7468_HFPWM(data) \ 72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM)) 73 74/* These are the recognized values for the above regs */ 75#define LM85_COMPANY_NATIONAL 0x01 76#define LM85_COMPANY_ANALOG_DEV 0x41 77#define LM85_COMPANY_SMSC 0x5c 78#define LM85_VERSTEP_VMASK 0xf0 79#define LM85_VERSTEP_GENERIC 0x60 80#define LM85_VERSTEP_GENERIC2 0x70 81#define LM85_VERSTEP_LM85C 0x60 82#define LM85_VERSTEP_LM85B 0x62 83#define LM85_VERSTEP_LM96000_1 0x68 84#define LM85_VERSTEP_LM96000_2 0x69 85#define LM85_VERSTEP_ADM1027 0x60 86#define LM85_VERSTEP_ADT7463 0x62 87#define LM85_VERSTEP_ADT7463C 0x6A 88#define LM85_VERSTEP_ADT7468_1 0x71 89#define LM85_VERSTEP_ADT7468_2 0x72 90#define LM85_VERSTEP_EMC6D100_A0 0x60 91#define LM85_VERSTEP_EMC6D100_A1 0x61 92#define LM85_VERSTEP_EMC6D102 0x65 93#define LM85_VERSTEP_EMC6D103_A0 0x68 94#define LM85_VERSTEP_EMC6D103_A1 0x69 95#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */ 96 97#define LM85_REG_CONFIG 0x40 98 99#define LM85_REG_ALARM1 0x41 100#define LM85_REG_ALARM2 0x42 101 102#define LM85_REG_VID 0x43 103 104/* Automated FAN control */ 105#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr)) 106#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr)) 107#define LM85_REG_AFAN_SPIKE1 0x62 108#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr)) 109#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr)) 110#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr)) 111#define LM85_REG_AFAN_HYST1 0x6d 112#define LM85_REG_AFAN_HYST2 0x6e 113 114#define ADM1027_REG_EXTEND_ADC1 0x76 115#define ADM1027_REG_EXTEND_ADC2 0x77 116 117#define EMC6D100_REG_ALARM3 0x7d 118/* IN5, IN6 and IN7 */ 119#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5)) 120#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2) 121#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2) 122#define EMC6D102_REG_EXTEND_ADC1 0x85 123#define EMC6D102_REG_EXTEND_ADC2 0x86 124#define EMC6D102_REG_EXTEND_ADC3 0x87 125#define EMC6D102_REG_EXTEND_ADC4 0x88 126 127 128/* Conversions. Rounding and limit checking is only done on the TO_REG 129 variants. Note that you should be a bit careful with which arguments 130 these macros are called: arguments may be evaluated more than once. 131 */ 132 133/* IN are scaled according to built-in resistors */ 134static const int lm85_scaling[] = { /* .001 Volts */ 135 2500, 2250, 3300, 5000, 12000, 136 3300, 1500, 1800 /*EMC6D100*/ 137}; 138#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from)) 139 140#define INS_TO_REG(n, val) \ 141 SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255) 142 143#define INSEXT_FROM_REG(n, val, ext) \ 144 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n]) 145 146#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n]) 147 148/* FAN speed is measured using 90kHz clock */ 149static inline u16 FAN_TO_REG(unsigned long val) 150{ 151 if (!val) 152 return 0xffff; 153 return SENSORS_LIMIT(5400000 / val, 1, 0xfffe); 154} 155#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \ 156 5400000 / (val)) 157 158/* Temperature is reported in .001 degC increments */ 159#define TEMP_TO_REG(val) \ 160 SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127) 161#define TEMPEXT_FROM_REG(val, ext) \ 162 SCALE(((val) << 4) + (ext), 16, 1000) 163#define TEMP_FROM_REG(val) ((val) * 1000) 164 165#define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255) 166#define PWM_FROM_REG(val) (val) 167 168 169/* ZONEs have the following parameters: 170 * Limit (low) temp, 1. degC 171 * Hysteresis (below limit), 1. degC (0-15) 172 * Range of speed control, .1 degC (2-80) 173 * Critical (high) temp, 1. degC 174 * 175 * FAN PWMs have the following parameters: 176 * Reference Zone, 1, 2, 3, etc. 177 * Spinup time, .05 sec 178 * PWM value at limit/low temp, 1 count 179 * PWM Frequency, 1. Hz 180 * PWM is Min or OFF below limit, flag 181 * Invert PWM output, flag 182 * 183 * Some chips filter the temp, others the fan. 184 * Filter constant (or disabled) .1 seconds 185 */ 186 187/* These are the zone temperature range encodings in .001 degree C */ 188static const int lm85_range_map[] = { 189 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000, 190 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000 191}; 192 193static int RANGE_TO_REG(int range) 194{ 195 int i; 196 197 /* Find the closest match */ 198 for (i = 0; i < 15; ++i) { 199 if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2) 200 break; 201 } 202 203 return i; 204} 205#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f] 206 207/* These are the PWM frequency encodings */ 208static const int lm85_freq_map[8] = { /* 1 Hz */ 209 10, 15, 23, 30, 38, 47, 61, 94 210}; 211static const int adm1027_freq_map[8] = { /* 1 Hz */ 212 11, 15, 22, 29, 35, 44, 59, 88 213}; 214 215static int FREQ_TO_REG(const int *map, int freq) 216{ 217 int i; 218 219 /* Find the closest match */ 220 for (i = 0; i < 7; ++i) 221 if (freq <= (map[i] + map[i + 1]) / 2) 222 break; 223 return i; 224} 225 226static int FREQ_FROM_REG(const int *map, u8 reg) 227{ 228 return map[reg & 0x07]; 229} 230 231/* Since we can't use strings, I'm abusing these numbers 232 * to stand in for the following meanings: 233 * 1 -- PWM responds to Zone 1 234 * 2 -- PWM responds to Zone 2 235 * 3 -- PWM responds to Zone 3 236 * 23 -- PWM responds to the higher temp of Zone 2 or 3 237 * 123 -- PWM responds to highest of Zone 1, 2, or 3 238 * 0 -- PWM is always at 0% (ie, off) 239 * -1 -- PWM is always at 100% 240 * -2 -- PWM responds to manual control 241 */ 242 243static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 }; 244#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5] 245 246static int ZONE_TO_REG(int zone) 247{ 248 int i; 249 250 for (i = 0; i <= 7; ++i) 251 if (zone == lm85_zone_map[i]) 252 break; 253 if (i > 7) /* Not found. */ 254 i = 3; /* Always 100% */ 255 return i << 5; 256} 257 258#define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15) 259#define HYST_FROM_REG(val) ((val) * 1000) 260 261/* Chip sampling rates 262 * 263 * Some sensors are not updated more frequently than once per second 264 * so it doesn't make sense to read them more often than that. 265 * We cache the results and return the saved data if the driver 266 * is called again before a second has elapsed. 267 * 268 * Also, there is significant configuration data for this chip 269 * given the automatic PWM fan control that is possible. There 270 * are about 47 bytes of config data to only 22 bytes of actual 271 * readings. So, we keep the config data up to date in the cache 272 * when it is written and only sample it once every 1 *minute* 273 */ 274#define LM85_DATA_INTERVAL (HZ + HZ / 2) 275#define LM85_CONFIG_INTERVAL (1 * 60 * HZ) 276 277/* LM85 can automatically adjust fan speeds based on temperature 278 * This structure encapsulates an entire Zone config. There are 279 * three zones (one for each temperature input) on the lm85 280 */ 281struct lm85_zone { 282 s8 limit; /* Low temp limit */ 283 u8 hyst; /* Low limit hysteresis. (0-15) */ 284 u8 range; /* Temp range, encoded */ 285 s8 critical; /* "All fans ON" temp limit */ 286 u8 max_desired; /* Actual "max" temperature specified. Preserved 287 * to prevent "drift" as other autofan control 288 * values change. 289 */ 290}; 291 292struct lm85_autofan { 293 u8 config; /* Register value */ 294 u8 min_pwm; /* Minimum PWM value, encoded */ 295 u8 min_off; /* Min PWM or OFF below "limit", flag */ 296}; 297 298/* For each registered chip, we need to keep some data in memory. 299 The structure is dynamically allocated. */ 300struct lm85_data { 301 struct device *hwmon_dev; 302 const int *freq_map; 303 enum chips type; 304 305 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */ 306 307 struct mutex update_lock; 308 int valid; /* !=0 if following fields are valid */ 309 unsigned long last_reading; /* In jiffies */ 310 unsigned long last_config; /* In jiffies */ 311 312 u8 in[8]; /* Register value */ 313 u8 in_max[8]; /* Register value */ 314 u8 in_min[8]; /* Register value */ 315 s8 temp[3]; /* Register value */ 316 s8 temp_min[3]; /* Register value */ 317 s8 temp_max[3]; /* Register value */ 318 u16 fan[4]; /* Register value */ 319 u16 fan_min[4]; /* Register value */ 320 u8 pwm[3]; /* Register value */ 321 u8 pwm_freq[3]; /* Register encoding */ 322 u8 temp_ext[3]; /* Decoded values */ 323 u8 in_ext[8]; /* Decoded values */ 324 u8 vid; /* Register value */ 325 u8 vrm; /* VRM version */ 326 u32 alarms; /* Register encoding, combined */ 327 u8 cfg5; /* Config Register 5 on ADT7468 */ 328 struct lm85_autofan autofan[3]; 329 struct lm85_zone zone[3]; 330}; 331 332static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info); 333static int lm85_probe(struct i2c_client *client, 334 const struct i2c_device_id *id); 335static int lm85_remove(struct i2c_client *client); 336 337static int lm85_read_value(struct i2c_client *client, u8 reg); 338static void lm85_write_value(struct i2c_client *client, u8 reg, int value); 339static struct lm85_data *lm85_update_device(struct device *dev); 340 341 342static const struct i2c_device_id lm85_id[] = { 343 { "adm1027", adm1027 }, 344 { "adt7463", adt7463 }, 345 { "adt7468", adt7468 }, 346 { "lm85", any_chip }, 347 { "lm85b", lm85b }, 348 { "lm85c", lm85c }, 349 { "emc6d100", emc6d100 }, 350 { "emc6d101", emc6d100 }, 351 { "emc6d102", emc6d102 }, 352 { "emc6d103", emc6d103 }, 353 { "emc6d103s", emc6d103s }, 354 { } 355}; 356MODULE_DEVICE_TABLE(i2c, lm85_id); 357 358static struct i2c_driver lm85_driver = { 359 .class = I2C_CLASS_HWMON, 360 .driver = { 361 .name = "lm85", 362 }, 363 .probe = lm85_probe, 364 .remove = lm85_remove, 365 .id_table = lm85_id, 366 .detect = lm85_detect, 367 .address_list = normal_i2c, 368}; 369 370 371/* 4 Fans */ 372static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 373 char *buf) 374{ 375 int nr = to_sensor_dev_attr(attr)->index; 376 struct lm85_data *data = lm85_update_device(dev); 377 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr])); 378} 379 380static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 381 char *buf) 382{ 383 int nr = to_sensor_dev_attr(attr)->index; 384 struct lm85_data *data = lm85_update_device(dev); 385 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr])); 386} 387 388static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390{ 391 int nr = to_sensor_dev_attr(attr)->index; 392 struct i2c_client *client = to_i2c_client(dev); 393 struct lm85_data *data = i2c_get_clientdata(client); 394 unsigned long val = simple_strtoul(buf, NULL, 10); 395 396 mutex_lock(&data->update_lock); 397 data->fan_min[nr] = FAN_TO_REG(val); 398 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]); 399 mutex_unlock(&data->update_lock); 400 return count; 401} 402 403#define show_fan_offset(offset) \ 404static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 405 show_fan, NULL, offset - 1); \ 406static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 407 show_fan_min, set_fan_min, offset - 1) 408 409show_fan_offset(1); 410show_fan_offset(2); 411show_fan_offset(3); 412show_fan_offset(4); 413 414/* vid, vrm, alarms */ 415 416static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, 417 char *buf) 418{ 419 struct lm85_data *data = lm85_update_device(dev); 420 int vid; 421 422 if (data->has_vid5) { 423 /* 6-pin VID (VRM 10) */ 424 vid = vid_from_reg(data->vid & 0x3f, data->vrm); 425 } else { 426 /* 5-pin VID (VRM 9) */ 427 vid = vid_from_reg(data->vid & 0x1f, data->vrm); 428 } 429 430 return sprintf(buf, "%d\n", vid); 431} 432 433static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); 434 435static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, 436 char *buf) 437{ 438 struct lm85_data *data = dev_get_drvdata(dev); 439 return sprintf(buf, "%ld\n", (long) data->vrm); 440} 441 442static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, 443 const char *buf, size_t count) 444{ 445 struct lm85_data *data = dev_get_drvdata(dev); 446 data->vrm = simple_strtoul(buf, NULL, 10); 447 return count; 448} 449 450static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); 451 452static ssize_t show_alarms_reg(struct device *dev, struct device_attribute 453 *attr, char *buf) 454{ 455 struct lm85_data *data = lm85_update_device(dev); 456 return sprintf(buf, "%u\n", data->alarms); 457} 458 459static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); 460 461static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 462 char *buf) 463{ 464 int nr = to_sensor_dev_attr(attr)->index; 465 struct lm85_data *data = lm85_update_device(dev); 466 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); 467} 468 469static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 470static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 471static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 472static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 473static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 474static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18); 475static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16); 476static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17); 477static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 478static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14); 479static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 480static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6); 481static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15); 482static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); 483static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); 484static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12); 485static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13); 486 487/* pwm */ 488 489static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 490 char *buf) 491{ 492 int nr = to_sensor_dev_attr(attr)->index; 493 struct lm85_data *data = lm85_update_device(dev); 494 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); 495} 496 497static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, 498 const char *buf, size_t count) 499{ 500 int nr = to_sensor_dev_attr(attr)->index; 501 struct i2c_client *client = to_i2c_client(dev); 502 struct lm85_data *data = i2c_get_clientdata(client); 503 long val = simple_strtol(buf, NULL, 10); 504 505 mutex_lock(&data->update_lock); 506 data->pwm[nr] = PWM_TO_REG(val); 507 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]); 508 mutex_unlock(&data->update_lock); 509 return count; 510} 511 512static ssize_t show_pwm_enable(struct device *dev, struct device_attribute 513 *attr, char *buf) 514{ 515 int nr = to_sensor_dev_attr(attr)->index; 516 struct lm85_data *data = lm85_update_device(dev); 517 int pwm_zone, enable; 518 519 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config); 520 switch (pwm_zone) { 521 case -1: /* PWM is always at 100% */ 522 enable = 0; 523 break; 524 case 0: /* PWM is always at 0% */ 525 case -2: /* PWM responds to manual control */ 526 enable = 1; 527 break; 528 default: /* PWM in automatic mode */ 529 enable = 2; 530 } 531 return sprintf(buf, "%d\n", enable); 532} 533 534static ssize_t set_pwm_enable(struct device *dev, struct device_attribute 535 *attr, const char *buf, size_t count) 536{ 537 int nr = to_sensor_dev_attr(attr)->index; 538 struct i2c_client *client = to_i2c_client(dev); 539 struct lm85_data *data = i2c_get_clientdata(client); 540 long val = simple_strtol(buf, NULL, 10); 541 u8 config; 542 543 switch (val) { 544 case 0: 545 config = 3; 546 break; 547 case 1: 548 config = 7; 549 break; 550 case 2: 551 /* Here we have to choose arbitrarily one of the 5 possible 552 configurations; I go for the safest */ 553 config = 6; 554 break; 555 default: 556 return -EINVAL; 557 } 558 559 mutex_lock(&data->update_lock); 560 data->autofan[nr].config = lm85_read_value(client, 561 LM85_REG_AFAN_CONFIG(nr)); 562 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0) 563 | (config << 5); 564 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 565 data->autofan[nr].config); 566 mutex_unlock(&data->update_lock); 567 return count; 568} 569 570static ssize_t show_pwm_freq(struct device *dev, 571 struct device_attribute *attr, char *buf) 572{ 573 int nr = to_sensor_dev_attr(attr)->index; 574 struct lm85_data *data = lm85_update_device(dev); 575 int freq; 576 577 if (IS_ADT7468_HFPWM(data)) 578 freq = 22500; 579 else 580 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]); 581 582 return sprintf(buf, "%d\n", freq); 583} 584 585static ssize_t set_pwm_freq(struct device *dev, 586 struct device_attribute *attr, const char *buf, size_t count) 587{ 588 int nr = to_sensor_dev_attr(attr)->index; 589 struct i2c_client *client = to_i2c_client(dev); 590 struct lm85_data *data = i2c_get_clientdata(client); 591 long val = simple_strtol(buf, NULL, 10); 592 593 mutex_lock(&data->update_lock); 594 /* The ADT7468 has a special high-frequency PWM output mode, 595 * where all PWM outputs are driven by a 22.5 kHz clock. 596 * This might confuse the user, but there's not much we can do. */ 597 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */ 598 data->cfg5 &= ~ADT7468_HFPWM; 599 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 600 } else { /* Low freq. mode */ 601 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val); 602 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 603 (data->zone[nr].range << 4) 604 | data->pwm_freq[nr]); 605 if (data->type == adt7468) { 606 data->cfg5 |= ADT7468_HFPWM; 607 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 608 } 609 } 610 mutex_unlock(&data->update_lock); 611 return count; 612} 613 614#define show_pwm_reg(offset) \ 615static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \ 616 show_pwm, set_pwm, offset - 1); \ 617static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \ 618 show_pwm_enable, set_pwm_enable, offset - 1); \ 619static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \ 620 show_pwm_freq, set_pwm_freq, offset - 1) 621 622show_pwm_reg(1); 623show_pwm_reg(2); 624show_pwm_reg(3); 625 626/* Voltages */ 627 628static ssize_t show_in(struct device *dev, struct device_attribute *attr, 629 char *buf) 630{ 631 int nr = to_sensor_dev_attr(attr)->index; 632 struct lm85_data *data = lm85_update_device(dev); 633 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr], 634 data->in_ext[nr])); 635} 636 637static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, 638 char *buf) 639{ 640 int nr = to_sensor_dev_attr(attr)->index; 641 struct lm85_data *data = lm85_update_device(dev); 642 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr])); 643} 644 645static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, 646 const char *buf, size_t count) 647{ 648 int nr = to_sensor_dev_attr(attr)->index; 649 struct i2c_client *client = to_i2c_client(dev); 650 struct lm85_data *data = i2c_get_clientdata(client); 651 long val = simple_strtol(buf, NULL, 10); 652 653 mutex_lock(&data->update_lock); 654 data->in_min[nr] = INS_TO_REG(nr, val); 655 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]); 656 mutex_unlock(&data->update_lock); 657 return count; 658} 659 660static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, 661 char *buf) 662{ 663 int nr = to_sensor_dev_attr(attr)->index; 664 struct lm85_data *data = lm85_update_device(dev); 665 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr])); 666} 667 668static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, 669 const char *buf, size_t count) 670{ 671 int nr = to_sensor_dev_attr(attr)->index; 672 struct i2c_client *client = to_i2c_client(dev); 673 struct lm85_data *data = i2c_get_clientdata(client); 674 long val = simple_strtol(buf, NULL, 10); 675 676 mutex_lock(&data->update_lock); 677 data->in_max[nr] = INS_TO_REG(nr, val); 678 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]); 679 mutex_unlock(&data->update_lock); 680 return count; 681} 682 683#define show_in_reg(offset) \ 684static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 685 show_in, NULL, offset); \ 686static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 687 show_in_min, set_in_min, offset); \ 688static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 689 show_in_max, set_in_max, offset) 690 691show_in_reg(0); 692show_in_reg(1); 693show_in_reg(2); 694show_in_reg(3); 695show_in_reg(4); 696show_in_reg(5); 697show_in_reg(6); 698show_in_reg(7); 699 700/* Temps */ 701 702static ssize_t show_temp(struct device *dev, struct device_attribute *attr, 703 char *buf) 704{ 705 int nr = to_sensor_dev_attr(attr)->index; 706 struct lm85_data *data = lm85_update_device(dev); 707 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr], 708 data->temp_ext[nr])); 709} 710 711static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, 712 char *buf) 713{ 714 int nr = to_sensor_dev_attr(attr)->index; 715 struct lm85_data *data = lm85_update_device(dev); 716 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); 717} 718 719static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, 720 const char *buf, size_t count) 721{ 722 int nr = to_sensor_dev_attr(attr)->index; 723 struct i2c_client *client = to_i2c_client(dev); 724 struct lm85_data *data = i2c_get_clientdata(client); 725 long val = simple_strtol(buf, NULL, 10); 726 727 if (IS_ADT7468_OFF64(data)) 728 val += 64; 729 730 mutex_lock(&data->update_lock); 731 data->temp_min[nr] = TEMP_TO_REG(val); 732 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]); 733 mutex_unlock(&data->update_lock); 734 return count; 735} 736 737static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, 738 char *buf) 739{ 740 int nr = to_sensor_dev_attr(attr)->index; 741 struct lm85_data *data = lm85_update_device(dev); 742 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); 743} 744 745static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, 746 const char *buf, size_t count) 747{ 748 int nr = to_sensor_dev_attr(attr)->index; 749 struct i2c_client *client = to_i2c_client(dev); 750 struct lm85_data *data = i2c_get_clientdata(client); 751 long val = simple_strtol(buf, NULL, 10); 752 753 if (IS_ADT7468_OFF64(data)) 754 val += 64; 755 756 mutex_lock(&data->update_lock); 757 data->temp_max[nr] = TEMP_TO_REG(val); 758 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]); 759 mutex_unlock(&data->update_lock); 760 return count; 761} 762 763#define show_temp_reg(offset) \ 764static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ 765 show_temp, NULL, offset - 1); \ 766static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ 767 show_temp_min, set_temp_min, offset - 1); \ 768static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ 769 show_temp_max, set_temp_max, offset - 1); 770 771show_temp_reg(1); 772show_temp_reg(2); 773show_temp_reg(3); 774 775 776/* Automatic PWM control */ 777 778static ssize_t show_pwm_auto_channels(struct device *dev, 779 struct device_attribute *attr, char *buf) 780{ 781 int nr = to_sensor_dev_attr(attr)->index; 782 struct lm85_data *data = lm85_update_device(dev); 783 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config)); 784} 785 786static ssize_t set_pwm_auto_channels(struct device *dev, 787 struct device_attribute *attr, const char *buf, size_t count) 788{ 789 int nr = to_sensor_dev_attr(attr)->index; 790 struct i2c_client *client = to_i2c_client(dev); 791 struct lm85_data *data = i2c_get_clientdata(client); 792 long val = simple_strtol(buf, NULL, 10); 793 794 mutex_lock(&data->update_lock); 795 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0)) 796 | ZONE_TO_REG(val); 797 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 798 data->autofan[nr].config); 799 mutex_unlock(&data->update_lock); 800 return count; 801} 802 803static ssize_t show_pwm_auto_pwm_min(struct device *dev, 804 struct device_attribute *attr, char *buf) 805{ 806 int nr = to_sensor_dev_attr(attr)->index; 807 struct lm85_data *data = lm85_update_device(dev); 808 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm)); 809} 810 811static ssize_t set_pwm_auto_pwm_min(struct device *dev, 812 struct device_attribute *attr, const char *buf, size_t count) 813{ 814 int nr = to_sensor_dev_attr(attr)->index; 815 struct i2c_client *client = to_i2c_client(dev); 816 struct lm85_data *data = i2c_get_clientdata(client); 817 long val = simple_strtol(buf, NULL, 10); 818 819 mutex_lock(&data->update_lock); 820 data->autofan[nr].min_pwm = PWM_TO_REG(val); 821 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr), 822 data->autofan[nr].min_pwm); 823 mutex_unlock(&data->update_lock); 824 return count; 825} 826 827static ssize_t show_pwm_auto_pwm_minctl(struct device *dev, 828 struct device_attribute *attr, char *buf) 829{ 830 int nr = to_sensor_dev_attr(attr)->index; 831 struct lm85_data *data = lm85_update_device(dev); 832 return sprintf(buf, "%d\n", data->autofan[nr].min_off); 833} 834 835static ssize_t set_pwm_auto_pwm_minctl(struct device *dev, 836 struct device_attribute *attr, const char *buf, size_t count) 837{ 838 int nr = to_sensor_dev_attr(attr)->index; 839 struct i2c_client *client = to_i2c_client(dev); 840 struct lm85_data *data = i2c_get_clientdata(client); 841 long val = simple_strtol(buf, NULL, 10); 842 u8 tmp; 843 844 mutex_lock(&data->update_lock); 845 data->autofan[nr].min_off = val; 846 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 847 tmp &= ~(0x20 << nr); 848 if (data->autofan[nr].min_off) 849 tmp |= 0x20 << nr; 850 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp); 851 mutex_unlock(&data->update_lock); 852 return count; 853} 854 855#define pwm_auto(offset) \ 856static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \ 857 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \ 858 set_pwm_auto_channels, offset - 1); \ 859static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \ 860 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \ 861 set_pwm_auto_pwm_min, offset - 1); \ 862static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \ 863 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \ 864 set_pwm_auto_pwm_minctl, offset - 1) 865 866pwm_auto(1); 867pwm_auto(2); 868pwm_auto(3); 869 870/* Temperature settings for automatic PWM control */ 871 872static ssize_t show_temp_auto_temp_off(struct device *dev, 873 struct device_attribute *attr, char *buf) 874{ 875 int nr = to_sensor_dev_attr(attr)->index; 876 struct lm85_data *data = lm85_update_device(dev); 877 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) - 878 HYST_FROM_REG(data->zone[nr].hyst)); 879} 880 881static ssize_t set_temp_auto_temp_off(struct device *dev, 882 struct device_attribute *attr, const char *buf, size_t count) 883{ 884 int nr = to_sensor_dev_attr(attr)->index; 885 struct i2c_client *client = to_i2c_client(dev); 886 struct lm85_data *data = i2c_get_clientdata(client); 887 int min; 888 long val = simple_strtol(buf, NULL, 10); 889 890 mutex_lock(&data->update_lock); 891 min = TEMP_FROM_REG(data->zone[nr].limit); 892 data->zone[nr].hyst = HYST_TO_REG(min - val); 893 if (nr == 0 || nr == 1) { 894 lm85_write_value(client, LM85_REG_AFAN_HYST1, 895 (data->zone[0].hyst << 4) 896 | data->zone[1].hyst); 897 } else { 898 lm85_write_value(client, LM85_REG_AFAN_HYST2, 899 (data->zone[2].hyst << 4)); 900 } 901 mutex_unlock(&data->update_lock); 902 return count; 903} 904 905static ssize_t show_temp_auto_temp_min(struct device *dev, 906 struct device_attribute *attr, char *buf) 907{ 908 int nr = to_sensor_dev_attr(attr)->index; 909 struct lm85_data *data = lm85_update_device(dev); 910 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit)); 911} 912 913static ssize_t set_temp_auto_temp_min(struct device *dev, 914 struct device_attribute *attr, const char *buf, size_t count) 915{ 916 int nr = to_sensor_dev_attr(attr)->index; 917 struct i2c_client *client = to_i2c_client(dev); 918 struct lm85_data *data = i2c_get_clientdata(client); 919 long val = simple_strtol(buf, NULL, 10); 920 921 mutex_lock(&data->update_lock); 922 data->zone[nr].limit = TEMP_TO_REG(val); 923 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr), 924 data->zone[nr].limit); 925 926/* Update temp_auto_max and temp_auto_range */ 927 data->zone[nr].range = RANGE_TO_REG( 928 TEMP_FROM_REG(data->zone[nr].max_desired) - 929 TEMP_FROM_REG(data->zone[nr].limit)); 930 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 931 ((data->zone[nr].range & 0x0f) << 4) 932 | (data->pwm_freq[nr] & 0x07)); 933 934 mutex_unlock(&data->update_lock); 935 return count; 936} 937 938static ssize_t show_temp_auto_temp_max(struct device *dev, 939 struct device_attribute *attr, char *buf) 940{ 941 int nr = to_sensor_dev_attr(attr)->index; 942 struct lm85_data *data = lm85_update_device(dev); 943 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) + 944 RANGE_FROM_REG(data->zone[nr].range)); 945} 946 947static ssize_t set_temp_auto_temp_max(struct device *dev, 948 struct device_attribute *attr, const char *buf, size_t count) 949{ 950 int nr = to_sensor_dev_attr(attr)->index; 951 struct i2c_client *client = to_i2c_client(dev); 952 struct lm85_data *data = i2c_get_clientdata(client); 953 int min; 954 long val = simple_strtol(buf, NULL, 10); 955 956 mutex_lock(&data->update_lock); 957 min = TEMP_FROM_REG(data->zone[nr].limit); 958 data->zone[nr].max_desired = TEMP_TO_REG(val); 959 data->zone[nr].range = RANGE_TO_REG( 960 val - min); 961 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 962 ((data->zone[nr].range & 0x0f) << 4) 963 | (data->pwm_freq[nr] & 0x07)); 964 mutex_unlock(&data->update_lock); 965 return count; 966} 967 968static ssize_t show_temp_auto_temp_crit(struct device *dev, 969 struct device_attribute *attr, char *buf) 970{ 971 int nr = to_sensor_dev_attr(attr)->index; 972 struct lm85_data *data = lm85_update_device(dev); 973 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical)); 974} 975 976static ssize_t set_temp_auto_temp_crit(struct device *dev, 977 struct device_attribute *attr, const char *buf, size_t count) 978{ 979 int nr = to_sensor_dev_attr(attr)->index; 980 struct i2c_client *client = to_i2c_client(dev); 981 struct lm85_data *data = i2c_get_clientdata(client); 982 long val = simple_strtol(buf, NULL, 10); 983 984 mutex_lock(&data->update_lock); 985 data->zone[nr].critical = TEMP_TO_REG(val); 986 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr), 987 data->zone[nr].critical); 988 mutex_unlock(&data->update_lock); 989 return count; 990} 991 992#define temp_auto(offset) \ 993static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \ 994 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \ 995 set_temp_auto_temp_off, offset - 1); \ 996static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \ 997 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \ 998 set_temp_auto_temp_min, offset - 1); \ 999static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \ 1000 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \ 1001 set_temp_auto_temp_max, offset - 1); \ 1002static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \ 1003 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \ 1004 set_temp_auto_temp_crit, offset - 1); 1005 1006temp_auto(1); 1007temp_auto(2); 1008temp_auto(3); 1009 1010static struct attribute *lm85_attributes[] = { 1011 &sensor_dev_attr_fan1_input.dev_attr.attr, 1012 &sensor_dev_attr_fan2_input.dev_attr.attr, 1013 &sensor_dev_attr_fan3_input.dev_attr.attr, 1014 &sensor_dev_attr_fan4_input.dev_attr.attr, 1015 &sensor_dev_attr_fan1_min.dev_attr.attr, 1016 &sensor_dev_attr_fan2_min.dev_attr.attr, 1017 &sensor_dev_attr_fan3_min.dev_attr.attr, 1018 &sensor_dev_attr_fan4_min.dev_attr.attr, 1019 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 1020 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 1021 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 1022 &sensor_dev_attr_fan4_alarm.dev_attr.attr, 1023 1024 &sensor_dev_attr_pwm1.dev_attr.attr, 1025 &sensor_dev_attr_pwm2.dev_attr.attr, 1026 &sensor_dev_attr_pwm3.dev_attr.attr, 1027 &sensor_dev_attr_pwm1_enable.dev_attr.attr, 1028 &sensor_dev_attr_pwm2_enable.dev_attr.attr, 1029 &sensor_dev_attr_pwm3_enable.dev_attr.attr, 1030 &sensor_dev_attr_pwm1_freq.dev_attr.attr, 1031 &sensor_dev_attr_pwm2_freq.dev_attr.attr, 1032 &sensor_dev_attr_pwm3_freq.dev_attr.attr, 1033 1034 &sensor_dev_attr_in0_input.dev_attr.attr, 1035 &sensor_dev_attr_in1_input.dev_attr.attr, 1036 &sensor_dev_attr_in2_input.dev_attr.attr, 1037 &sensor_dev_attr_in3_input.dev_attr.attr, 1038 &sensor_dev_attr_in0_min.dev_attr.attr, 1039 &sensor_dev_attr_in1_min.dev_attr.attr, 1040 &sensor_dev_attr_in2_min.dev_attr.attr, 1041 &sensor_dev_attr_in3_min.dev_attr.attr, 1042 &sensor_dev_attr_in0_max.dev_attr.attr, 1043 &sensor_dev_attr_in1_max.dev_attr.attr, 1044 &sensor_dev_attr_in2_max.dev_attr.attr, 1045 &sensor_dev_attr_in3_max.dev_attr.attr, 1046 &sensor_dev_attr_in0_alarm.dev_attr.attr, 1047 &sensor_dev_attr_in1_alarm.dev_attr.attr, 1048 &sensor_dev_attr_in2_alarm.dev_attr.attr, 1049 &sensor_dev_attr_in3_alarm.dev_attr.attr, 1050 1051 &sensor_dev_attr_temp1_input.dev_attr.attr, 1052 &sensor_dev_attr_temp2_input.dev_attr.attr, 1053 &sensor_dev_attr_temp3_input.dev_attr.attr, 1054 &sensor_dev_attr_temp1_min.dev_attr.attr, 1055 &sensor_dev_attr_temp2_min.dev_attr.attr, 1056 &sensor_dev_attr_temp3_min.dev_attr.attr, 1057 &sensor_dev_attr_temp1_max.dev_attr.attr, 1058 &sensor_dev_attr_temp2_max.dev_attr.attr, 1059 &sensor_dev_attr_temp3_max.dev_attr.attr, 1060 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 1061 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 1062 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 1063 &sensor_dev_attr_temp1_fault.dev_attr.attr, 1064 &sensor_dev_attr_temp3_fault.dev_attr.attr, 1065 1066 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, 1067 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, 1068 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr, 1069 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr, 1070 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr, 1071 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr, 1072 1073 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr, 1074 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr, 1075 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr, 1076 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr, 1077 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr, 1078 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr, 1079 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr, 1080 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr, 1081 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr, 1082 1083 &dev_attr_vrm.attr, 1084 &dev_attr_cpu0_vid.attr, 1085 &dev_attr_alarms.attr, 1086 NULL 1087}; 1088 1089static const struct attribute_group lm85_group = { 1090 .attrs = lm85_attributes, 1091}; 1092 1093static struct attribute *lm85_attributes_minctl[] = { 1094 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr, 1095 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr, 1096 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr, 1097 NULL 1098}; 1099 1100static const struct attribute_group lm85_group_minctl = { 1101 .attrs = lm85_attributes_minctl, 1102}; 1103 1104static struct attribute *lm85_attributes_temp_off[] = { 1105 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr, 1106 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr, 1107 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr, 1108 NULL 1109}; 1110 1111static const struct attribute_group lm85_group_temp_off = { 1112 .attrs = lm85_attributes_temp_off, 1113}; 1114 1115static struct attribute *lm85_attributes_in4[] = { 1116 &sensor_dev_attr_in4_input.dev_attr.attr, 1117 &sensor_dev_attr_in4_min.dev_attr.attr, 1118 &sensor_dev_attr_in4_max.dev_attr.attr, 1119 &sensor_dev_attr_in4_alarm.dev_attr.attr, 1120 NULL 1121}; 1122 1123static const struct attribute_group lm85_group_in4 = { 1124 .attrs = lm85_attributes_in4, 1125}; 1126 1127static struct attribute *lm85_attributes_in567[] = { 1128 &sensor_dev_attr_in5_input.dev_attr.attr, 1129 &sensor_dev_attr_in6_input.dev_attr.attr, 1130 &sensor_dev_attr_in7_input.dev_attr.attr, 1131 &sensor_dev_attr_in5_min.dev_attr.attr, 1132 &sensor_dev_attr_in6_min.dev_attr.attr, 1133 &sensor_dev_attr_in7_min.dev_attr.attr, 1134 &sensor_dev_attr_in5_max.dev_attr.attr, 1135 &sensor_dev_attr_in6_max.dev_attr.attr, 1136 &sensor_dev_attr_in7_max.dev_attr.attr, 1137 &sensor_dev_attr_in5_alarm.dev_attr.attr, 1138 &sensor_dev_attr_in6_alarm.dev_attr.attr, 1139 &sensor_dev_attr_in7_alarm.dev_attr.attr, 1140 NULL 1141}; 1142 1143static const struct attribute_group lm85_group_in567 = { 1144 .attrs = lm85_attributes_in567, 1145}; 1146 1147static void lm85_init_client(struct i2c_client *client) 1148{ 1149 int value; 1150 1151 /* Start monitoring if needed */ 1152 value = lm85_read_value(client, LM85_REG_CONFIG); 1153 if (!(value & 0x01)) { 1154 dev_info(&client->dev, "Starting monitoring\n"); 1155 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01); 1156 } 1157 1158 /* Warn about unusual configuration bits */ 1159 if (value & 0x02) 1160 dev_warn(&client->dev, "Device configuration is locked\n"); 1161 if (!(value & 0x04)) 1162 dev_warn(&client->dev, "Device is not ready\n"); 1163} 1164 1165static int lm85_is_fake(struct i2c_client *client) 1166{ 1167 /* 1168 * Differenciate between real LM96000 and Winbond WPCD377I. The latter 1169 * emulate the former except that it has no hardware monitoring function 1170 * so the readings are always 0. 1171 */ 1172 int i; 1173 u8 in_temp, fan; 1174 1175 for (i = 0; i < 8; i++) { 1176 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i); 1177 fan = i2c_smbus_read_byte_data(client, 0x28 + i); 1178 if (in_temp != 0x00 || fan != 0xff) 1179 return 0; 1180 } 1181 1182 return 1; 1183} 1184 1185/* Return 0 if detection is successful, -ENODEV otherwise */ 1186static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info) 1187{ 1188 struct i2c_adapter *adapter = client->adapter; 1189 int address = client->addr; 1190 const char *type_name; 1191 int company, verstep; 1192 1193 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 1194 /* We need to be able to do byte I/O */ 1195 return -ENODEV; 1196 } 1197 1198 /* Determine the chip type */ 1199 company = lm85_read_value(client, LM85_REG_COMPANY); 1200 verstep = lm85_read_value(client, LM85_REG_VERSTEP); 1201 1202 dev_dbg(&adapter->dev, "Detecting device at 0x%02x with " 1203 "COMPANY: 0x%02x and VERSTEP: 0x%02x\n", 1204 address, company, verstep); 1205 1206 /* All supported chips have the version in common */ 1207 if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC && 1208 (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) { 1209 dev_dbg(&adapter->dev, 1210 "Autodetection failed: unsupported version\n"); 1211 return -ENODEV; 1212 } 1213 type_name = "lm85"; 1214 1215 /* Now, refine the detection */ 1216 if (company == LM85_COMPANY_NATIONAL) { 1217 switch (verstep) { 1218 case LM85_VERSTEP_LM85C: 1219 type_name = "lm85c"; 1220 break; 1221 case LM85_VERSTEP_LM85B: 1222 type_name = "lm85b"; 1223 break; 1224 case LM85_VERSTEP_LM96000_1: 1225 case LM85_VERSTEP_LM96000_2: 1226 /* Check for Winbond WPCD377I */ 1227 if (lm85_is_fake(client)) { 1228 dev_dbg(&adapter->dev, 1229 "Found Winbond WPCD377I, ignoring\n"); 1230 return -ENODEV; 1231 } 1232 break; 1233 } 1234 } else if (company == LM85_COMPANY_ANALOG_DEV) { 1235 switch (verstep) { 1236 case LM85_VERSTEP_ADM1027: 1237 type_name = "adm1027"; 1238 break; 1239 case LM85_VERSTEP_ADT7463: 1240 case LM85_VERSTEP_ADT7463C: 1241 type_name = "adt7463"; 1242 break; 1243 case LM85_VERSTEP_ADT7468_1: 1244 case LM85_VERSTEP_ADT7468_2: 1245 type_name = "adt7468"; 1246 break; 1247 } 1248 } else if (company == LM85_COMPANY_SMSC) { 1249 switch (verstep) { 1250 case LM85_VERSTEP_EMC6D100_A0: 1251 case LM85_VERSTEP_EMC6D100_A1: 1252 /* Note: we can't tell a '100 from a '101 */ 1253 type_name = "emc6d100"; 1254 break; 1255 case LM85_VERSTEP_EMC6D102: 1256 type_name = "emc6d102"; 1257 break; 1258 case LM85_VERSTEP_EMC6D103_A0: 1259 case LM85_VERSTEP_EMC6D103_A1: 1260 type_name = "emc6d103"; 1261 break; 1262 case LM85_VERSTEP_EMC6D103S: 1263 type_name = "emc6d103s"; 1264 break; 1265 } 1266 } else { 1267 dev_dbg(&adapter->dev, 1268 "Autodetection failed: unknown vendor\n"); 1269 return -ENODEV; 1270 } 1271 1272 strlcpy(info->type, type_name, I2C_NAME_SIZE); 1273 1274 return 0; 1275} 1276 1277static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data) 1278{ 1279 sysfs_remove_group(&client->dev.kobj, &lm85_group); 1280 if (data->type != emc6d103s) { 1281 sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl); 1282 sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off); 1283 } 1284 if (!data->has_vid5) 1285 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4); 1286 if (data->type == emc6d100) 1287 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567); 1288} 1289 1290static int lm85_probe(struct i2c_client *client, 1291 const struct i2c_device_id *id) 1292{ 1293 struct lm85_data *data; 1294 int err; 1295 1296 data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL); 1297 if (!data) 1298 return -ENOMEM; 1299 1300 i2c_set_clientdata(client, data); 1301 data->type = id->driver_data; 1302 mutex_init(&data->update_lock); 1303 1304 /* Fill in the chip specific driver values */ 1305 switch (data->type) { 1306 case adm1027: 1307 case adt7463: 1308 case adt7468: 1309 case emc6d100: 1310 case emc6d102: 1311 case emc6d103: 1312 case emc6d103s: 1313 data->freq_map = adm1027_freq_map; 1314 break; 1315 default: 1316 data->freq_map = lm85_freq_map; 1317 } 1318 1319 /* Set the VRM version */ 1320 data->vrm = vid_which_vrm(); 1321 1322 /* Initialize the LM85 chip */ 1323 lm85_init_client(client); 1324 1325 /* Register sysfs hooks */ 1326 err = sysfs_create_group(&client->dev.kobj, &lm85_group); 1327 if (err) 1328 goto err_kfree; 1329 1330 /* minctl and temp_off exist on all chips except emc6d103s */ 1331 if (data->type != emc6d103s) { 1332 err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl); 1333 if (err) 1334 goto err_remove_files; 1335 err = sysfs_create_group(&client->dev.kobj, 1336 &lm85_group_temp_off); 1337 if (err) 1338 goto err_remove_files; 1339 } 1340 1341 /* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used 1342 as a sixth digital VID input rather than an analog input. */ 1343 if (data->type == adt7463 || data->type == adt7468) { 1344 u8 vid = lm85_read_value(client, LM85_REG_VID); 1345 if (vid & 0x80) 1346 data->has_vid5 = true; 1347 } 1348 1349 if (!data->has_vid5) 1350 if ((err = sysfs_create_group(&client->dev.kobj, 1351 &lm85_group_in4))) 1352 goto err_remove_files; 1353 1354 /* The EMC6D100 has 3 additional voltage inputs */ 1355 if (data->type == emc6d100) 1356 if ((err = sysfs_create_group(&client->dev.kobj, 1357 &lm85_group_in567))) 1358 goto err_remove_files; 1359 1360 data->hwmon_dev = hwmon_device_register(&client->dev); 1361 if (IS_ERR(data->hwmon_dev)) { 1362 err = PTR_ERR(data->hwmon_dev); 1363 goto err_remove_files; 1364 } 1365 1366 return 0; 1367 1368 /* Error out and cleanup code */ 1369 err_remove_files: 1370 lm85_remove_files(client, data); 1371 err_kfree: 1372 kfree(data); 1373 return err; 1374} 1375 1376static int lm85_remove(struct i2c_client *client) 1377{ 1378 struct lm85_data *data = i2c_get_clientdata(client); 1379 hwmon_device_unregister(data->hwmon_dev); 1380 lm85_remove_files(client, data); 1381 kfree(data); 1382 return 0; 1383} 1384 1385 1386static int lm85_read_value(struct i2c_client *client, u8 reg) 1387{ 1388 int res; 1389 1390 /* What size location is it? */ 1391 switch (reg) { 1392 case LM85_REG_FAN(0): /* Read WORD data */ 1393 case LM85_REG_FAN(1): 1394 case LM85_REG_FAN(2): 1395 case LM85_REG_FAN(3): 1396 case LM85_REG_FAN_MIN(0): 1397 case LM85_REG_FAN_MIN(1): 1398 case LM85_REG_FAN_MIN(2): 1399 case LM85_REG_FAN_MIN(3): 1400 case LM85_REG_ALARM1: /* Read both bytes at once */ 1401 res = i2c_smbus_read_byte_data(client, reg) & 0xff; 1402 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8; 1403 break; 1404 default: /* Read BYTE data */ 1405 res = i2c_smbus_read_byte_data(client, reg); 1406 break; 1407 } 1408 1409 return res; 1410} 1411 1412static void lm85_write_value(struct i2c_client *client, u8 reg, int value) 1413{ 1414 switch (reg) { 1415 case LM85_REG_FAN(0): /* Write WORD data */ 1416 case LM85_REG_FAN(1): 1417 case LM85_REG_FAN(2): 1418 case LM85_REG_FAN(3): 1419 case LM85_REG_FAN_MIN(0): 1420 case LM85_REG_FAN_MIN(1): 1421 case LM85_REG_FAN_MIN(2): 1422 case LM85_REG_FAN_MIN(3): 1423 /* NOTE: ALARM is read only, so not included here */ 1424 i2c_smbus_write_byte_data(client, reg, value & 0xff); 1425 i2c_smbus_write_byte_data(client, reg + 1, value >> 8); 1426 break; 1427 default: /* Write BYTE data */ 1428 i2c_smbus_write_byte_data(client, reg, value); 1429 break; 1430 } 1431} 1432 1433static struct lm85_data *lm85_update_device(struct device *dev) 1434{ 1435 struct i2c_client *client = to_i2c_client(dev); 1436 struct lm85_data *data = i2c_get_clientdata(client); 1437 int i; 1438 1439 mutex_lock(&data->update_lock); 1440 1441 if (!data->valid || 1442 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) { 1443 /* Things that change quickly */ 1444 dev_dbg(&client->dev, "Reading sensor values\n"); 1445 1446 /* Have to read extended bits first to "freeze" the 1447 * more significant bits that are read later. 1448 * There are 2 additional resolution bits per channel and we 1449 * have room for 4, so we shift them to the left. 1450 */ 1451 if (data->type == adm1027 || data->type == adt7463 || 1452 data->type == adt7468) { 1453 int ext1 = lm85_read_value(client, 1454 ADM1027_REG_EXTEND_ADC1); 1455 int ext2 = lm85_read_value(client, 1456 ADM1027_REG_EXTEND_ADC2); 1457 int val = (ext1 << 8) + ext2; 1458 1459 for (i = 0; i <= 4; i++) 1460 data->in_ext[i] = 1461 ((val >> (i * 2)) & 0x03) << 2; 1462 1463 for (i = 0; i <= 2; i++) 1464 data->temp_ext[i] = 1465 (val >> ((i + 4) * 2)) & 0x0c; 1466 } 1467 1468 data->vid = lm85_read_value(client, LM85_REG_VID); 1469 1470 for (i = 0; i <= 3; ++i) { 1471 data->in[i] = 1472 lm85_read_value(client, LM85_REG_IN(i)); 1473 data->fan[i] = 1474 lm85_read_value(client, LM85_REG_FAN(i)); 1475 } 1476 1477 if (!data->has_vid5) 1478 data->in[4] = lm85_read_value(client, LM85_REG_IN(4)); 1479 1480 if (data->type == adt7468) 1481 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5); 1482 1483 for (i = 0; i <= 2; ++i) { 1484 data->temp[i] = 1485 lm85_read_value(client, LM85_REG_TEMP(i)); 1486 data->pwm[i] = 1487 lm85_read_value(client, LM85_REG_PWM(i)); 1488 1489 if (IS_ADT7468_OFF64(data)) 1490 data->temp[i] -= 64; 1491 } 1492 1493 data->alarms = lm85_read_value(client, LM85_REG_ALARM1); 1494 1495 if (data->type == emc6d100) { 1496 /* Three more voltage sensors */ 1497 for (i = 5; i <= 7; ++i) { 1498 data->in[i] = lm85_read_value(client, 1499 EMC6D100_REG_IN(i)); 1500 } 1501 /* More alarm bits */ 1502 data->alarms |= lm85_read_value(client, 1503 EMC6D100_REG_ALARM3) << 16; 1504 } else if (data->type == emc6d102 || data->type == emc6d103 || 1505 data->type == emc6d103s) { 1506 /* Have to read LSB bits after the MSB ones because 1507 the reading of the MSB bits has frozen the 1508 LSBs (backward from the ADM1027). 1509 */ 1510 int ext1 = lm85_read_value(client, 1511 EMC6D102_REG_EXTEND_ADC1); 1512 int ext2 = lm85_read_value(client, 1513 EMC6D102_REG_EXTEND_ADC2); 1514 int ext3 = lm85_read_value(client, 1515 EMC6D102_REG_EXTEND_ADC3); 1516 int ext4 = lm85_read_value(client, 1517 EMC6D102_REG_EXTEND_ADC4); 1518 data->in_ext[0] = ext3 & 0x0f; 1519 data->in_ext[1] = ext4 & 0x0f; 1520 data->in_ext[2] = ext4 >> 4; 1521 data->in_ext[3] = ext3 >> 4; 1522 data->in_ext[4] = ext2 >> 4; 1523 1524 data->temp_ext[0] = ext1 & 0x0f; 1525 data->temp_ext[1] = ext2 & 0x0f; 1526 data->temp_ext[2] = ext1 >> 4; 1527 } 1528 1529 data->last_reading = jiffies; 1530 } /* last_reading */ 1531 1532 if (!data->valid || 1533 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) { 1534 /* Things that don't change often */ 1535 dev_dbg(&client->dev, "Reading config values\n"); 1536 1537 for (i = 0; i <= 3; ++i) { 1538 data->in_min[i] = 1539 lm85_read_value(client, LM85_REG_IN_MIN(i)); 1540 data->in_max[i] = 1541 lm85_read_value(client, LM85_REG_IN_MAX(i)); 1542 data->fan_min[i] = 1543 lm85_read_value(client, LM85_REG_FAN_MIN(i)); 1544 } 1545 1546 if (!data->has_vid5) { 1547 data->in_min[4] = lm85_read_value(client, 1548 LM85_REG_IN_MIN(4)); 1549 data->in_max[4] = lm85_read_value(client, 1550 LM85_REG_IN_MAX(4)); 1551 } 1552 1553 if (data->type == emc6d100) { 1554 for (i = 5; i <= 7; ++i) { 1555 data->in_min[i] = lm85_read_value(client, 1556 EMC6D100_REG_IN_MIN(i)); 1557 data->in_max[i] = lm85_read_value(client, 1558 EMC6D100_REG_IN_MAX(i)); 1559 } 1560 } 1561 1562 for (i = 0; i <= 2; ++i) { 1563 int val; 1564 1565 data->temp_min[i] = 1566 lm85_read_value(client, LM85_REG_TEMP_MIN(i)); 1567 data->temp_max[i] = 1568 lm85_read_value(client, LM85_REG_TEMP_MAX(i)); 1569 1570 data->autofan[i].config = 1571 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i)); 1572 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i)); 1573 data->pwm_freq[i] = val & 0x07; 1574 data->zone[i].range = val >> 4; 1575 data->autofan[i].min_pwm = 1576 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i)); 1577 data->zone[i].limit = 1578 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i)); 1579 data->zone[i].critical = 1580 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i)); 1581 1582 if (IS_ADT7468_OFF64(data)) { 1583 data->temp_min[i] -= 64; 1584 data->temp_max[i] -= 64; 1585 data->zone[i].limit -= 64; 1586 data->zone[i].critical -= 64; 1587 } 1588 } 1589 1590 if (data->type != emc6d103s) { 1591 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 1592 data->autofan[0].min_off = (i & 0x20) != 0; 1593 data->autofan[1].min_off = (i & 0x40) != 0; 1594 data->autofan[2].min_off = (i & 0x80) != 0; 1595 1596 i = lm85_read_value(client, LM85_REG_AFAN_HYST1); 1597 data->zone[0].hyst = i >> 4; 1598 data->zone[1].hyst = i & 0x0f; 1599 1600 i = lm85_read_value(client, LM85_REG_AFAN_HYST2); 1601 data->zone[2].hyst = i >> 4; 1602 } 1603 1604 data->last_config = jiffies; 1605 } /* last_config */ 1606 1607 data->valid = 1; 1608 1609 mutex_unlock(&data->update_lock); 1610 1611 return data; 1612} 1613 1614 1615static int __init sm_lm85_init(void) 1616{ 1617 return i2c_add_driver(&lm85_driver); 1618} 1619 1620static void __exit sm_lm85_exit(void) 1621{ 1622 i2c_del_driver(&lm85_driver); 1623} 1624 1625MODULE_LICENSE("GPL"); 1626MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " 1627 "Margit Schubert-While <margitsw@t-online.de>, " 1628 "Justin Thiessen <jthiessen@penguincomputing.com>"); 1629MODULE_DESCRIPTION("LM85-B, LM85-C driver"); 1630 1631module_init(sm_lm85_init); 1632module_exit(sm_lm85_exit);