/drivers/char/ipmi/ipmi_si_intf.c
C | 3587 lines | 2596 code | 516 blank | 475 comment | 442 complexity | b3c08cb63e79106bd6485557688e6098 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
Large files files are truncated, but you can click here to view the full file
1/* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36/* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42#include <linux/module.h> 43#include <linux/moduleparam.h> 44#include <asm/system.h> 45#include <linux/sched.h> 46#include <linux/seq_file.h> 47#include <linux/timer.h> 48#include <linux/errno.h> 49#include <linux/spinlock.h> 50#include <linux/slab.h> 51#include <linux/delay.h> 52#include <linux/list.h> 53#include <linux/pci.h> 54#include <linux/ioport.h> 55#include <linux/notifier.h> 56#include <linux/mutex.h> 57#include <linux/kthread.h> 58#include <asm/irq.h> 59#include <linux/interrupt.h> 60#include <linux/rcupdate.h> 61#include <linux/ipmi.h> 62#include <linux/ipmi_smi.h> 63#include <asm/io.h> 64#include "ipmi_si_sm.h" 65#include <linux/init.h> 66#include <linux/dmi.h> 67#include <linux/string.h> 68#include <linux/ctype.h> 69#include <linux/pnp.h> 70#include <linux/of_device.h> 71#include <linux/of_platform.h> 72#include <linux/of_address.h> 73#include <linux/of_irq.h> 74 75#define PFX "ipmi_si: " 76 77/* Measure times between events in the driver. */ 78#undef DEBUG_TIMING 79 80/* Call every 10 ms. */ 81#define SI_TIMEOUT_TIME_USEC 10000 82#define SI_USEC_PER_JIFFY (1000000/HZ) 83#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 84#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 85 short timeout */ 86 87enum si_intf_state { 88 SI_NORMAL, 89 SI_GETTING_FLAGS, 90 SI_GETTING_EVENTS, 91 SI_CLEARING_FLAGS, 92 SI_CLEARING_FLAGS_THEN_SET_IRQ, 93 SI_GETTING_MESSAGES, 94 SI_ENABLE_INTERRUPTS1, 95 SI_ENABLE_INTERRUPTS2, 96 SI_DISABLE_INTERRUPTS1, 97 SI_DISABLE_INTERRUPTS2 98 /* FIXME - add watchdog stuff. */ 99}; 100 101/* Some BT-specific defines we need here. */ 102#define IPMI_BT_INTMASK_REG 2 103#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108}; 109static char *si_to_str[] = { "kcs", "smic", "bt" }; 110 111static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 112 "ACPI", "SMBIOS", "PCI", 113 "device-tree", "default" }; 114 115#define DEVICE_NAME "ipmi_si" 116 117static struct platform_driver ipmi_driver; 118 119/* 120 * Indexes into stats[] in smi_info below. 121 */ 122enum si_stat_indexes { 123 /* 124 * Number of times the driver requested a timer while an operation 125 * was in progress. 126 */ 127 SI_STAT_short_timeouts = 0, 128 129 /* 130 * Number of times the driver requested a timer while nothing was in 131 * progress. 132 */ 133 SI_STAT_long_timeouts, 134 135 /* Number of times the interface was idle while being polled. */ 136 SI_STAT_idles, 137 138 /* Number of interrupts the driver handled. */ 139 SI_STAT_interrupts, 140 141 /* Number of time the driver got an ATTN from the hardware. */ 142 SI_STAT_attentions, 143 144 /* Number of times the driver requested flags from the hardware. */ 145 SI_STAT_flag_fetches, 146 147 /* Number of times the hardware didn't follow the state machine. */ 148 SI_STAT_hosed_count, 149 150 /* Number of completed messages. */ 151 SI_STAT_complete_transactions, 152 153 /* Number of IPMI events received from the hardware. */ 154 SI_STAT_events, 155 156 /* Number of watchdog pretimeouts. */ 157 SI_STAT_watchdog_pretimeouts, 158 159 /* Number of asyncronous messages received. */ 160 SI_STAT_incoming_messages, 161 162 163 /* This *must* remain last, add new values above this. */ 164 SI_NUM_STATS 165}; 166 167struct smi_info { 168 int intf_num; 169 ipmi_smi_t intf; 170 struct si_sm_data *si_sm; 171 struct si_sm_handlers *handlers; 172 enum si_type si_type; 173 spinlock_t si_lock; 174 spinlock_t msg_lock; 175 struct list_head xmit_msgs; 176 struct list_head hp_xmit_msgs; 177 struct ipmi_smi_msg *curr_msg; 178 enum si_intf_state si_state; 179 180 /* 181 * Used to handle the various types of I/O that can occur with 182 * IPMI 183 */ 184 struct si_sm_io io; 185 int (*io_setup)(struct smi_info *info); 186 void (*io_cleanup)(struct smi_info *info); 187 int (*irq_setup)(struct smi_info *info); 188 void (*irq_cleanup)(struct smi_info *info); 189 unsigned int io_size; 190 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 191 void (*addr_source_cleanup)(struct smi_info *info); 192 void *addr_source_data; 193 194 /* 195 * Per-OEM handler, called from handle_flags(). Returns 1 196 * when handle_flags() needs to be re-run or 0 indicating it 197 * set si_state itself. 198 */ 199 int (*oem_data_avail_handler)(struct smi_info *smi_info); 200 201 /* 202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 203 * is set to hold the flags until we are done handling everything 204 * from the flags. 205 */ 206#define RECEIVE_MSG_AVAIL 0x01 207#define EVENT_MSG_BUFFER_FULL 0x02 208#define WDT_PRE_TIMEOUT_INT 0x08 209#define OEM0_DATA_AVAIL 0x20 210#define OEM1_DATA_AVAIL 0x40 211#define OEM2_DATA_AVAIL 0x80 212#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 213 OEM1_DATA_AVAIL | \ 214 OEM2_DATA_AVAIL) 215 unsigned char msg_flags; 216 217 /* Does the BMC have an event buffer? */ 218 char has_event_buffer; 219 220 /* 221 * If set to true, this will request events the next time the 222 * state machine is idle. 223 */ 224 atomic_t req_events; 225 226 /* 227 * If true, run the state machine to completion on every send 228 * call. Generally used after a panic to make sure stuff goes 229 * out. 230 */ 231 int run_to_completion; 232 233 /* The I/O port of an SI interface. */ 234 int port; 235 236 /* 237 * The space between start addresses of the two ports. For 238 * instance, if the first port is 0xca2 and the spacing is 4, then 239 * the second port is 0xca6. 240 */ 241 unsigned int spacing; 242 243 /* zero if no irq; */ 244 int irq; 245 246 /* The timer for this si. */ 247 struct timer_list si_timer; 248 249 /* The time (in jiffies) the last timeout occurred at. */ 250 unsigned long last_timeout_jiffies; 251 252 /* Used to gracefully stop the timer without race conditions. */ 253 atomic_t stop_operation; 254 255 /* 256 * The driver will disable interrupts when it gets into a 257 * situation where it cannot handle messages due to lack of 258 * memory. Once that situation clears up, it will re-enable 259 * interrupts. 260 */ 261 int interrupt_disabled; 262 263 /* From the get device id response... */ 264 struct ipmi_device_id device_id; 265 266 /* Driver model stuff. */ 267 struct device *dev; 268 struct platform_device *pdev; 269 270 /* 271 * True if we allocated the device, false if it came from 272 * someplace else (like PCI). 273 */ 274 int dev_registered; 275 276 /* Slave address, could be reported from DMI. */ 277 unsigned char slave_addr; 278 279 /* Counters and things for the proc filesystem. */ 280 atomic_t stats[SI_NUM_STATS]; 281 282 struct task_struct *thread; 283 284 struct list_head link; 285 union ipmi_smi_info_union addr_info; 286}; 287 288#define smi_inc_stat(smi, stat) \ 289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 290#define smi_get_stat(smi, stat) \ 291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 292 293#define SI_MAX_PARMS 4 294 295static int force_kipmid[SI_MAX_PARMS]; 296static int num_force_kipmid; 297#ifdef CONFIG_PCI 298static int pci_registered; 299#endif 300#ifdef CONFIG_ACPI 301static int pnp_registered; 302#endif 303 304static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 305static int num_max_busy_us; 306 307static int unload_when_empty = 1; 308 309static int add_smi(struct smi_info *smi); 310static int try_smi_init(struct smi_info *smi); 311static void cleanup_one_si(struct smi_info *to_clean); 312static void cleanup_ipmi_si(void); 313 314static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 315static int register_xaction_notifier(struct notifier_block *nb) 316{ 317 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 318} 319 320static void deliver_recv_msg(struct smi_info *smi_info, 321 struct ipmi_smi_msg *msg) 322{ 323 /* Deliver the message to the upper layer with the lock 324 released. */ 325 326 if (smi_info->run_to_completion) { 327 ipmi_smi_msg_received(smi_info->intf, msg); 328 } else { 329 spin_unlock(&(smi_info->si_lock)); 330 ipmi_smi_msg_received(smi_info->intf, msg); 331 spin_lock(&(smi_info->si_lock)); 332 } 333} 334 335static void return_hosed_msg(struct smi_info *smi_info, int cCode) 336{ 337 struct ipmi_smi_msg *msg = smi_info->curr_msg; 338 339 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 340 cCode = IPMI_ERR_UNSPECIFIED; 341 /* else use it as is */ 342 343 /* Make it a response */ 344 msg->rsp[0] = msg->data[0] | 4; 345 msg->rsp[1] = msg->data[1]; 346 msg->rsp[2] = cCode; 347 msg->rsp_size = 3; 348 349 smi_info->curr_msg = NULL; 350 deliver_recv_msg(smi_info, msg); 351} 352 353static enum si_sm_result start_next_msg(struct smi_info *smi_info) 354{ 355 int rv; 356 struct list_head *entry = NULL; 357#ifdef DEBUG_TIMING 358 struct timeval t; 359#endif 360 361 /* 362 * No need to save flags, we aleady have interrupts off and we 363 * already hold the SMI lock. 364 */ 365 if (!smi_info->run_to_completion) 366 spin_lock(&(smi_info->msg_lock)); 367 368 /* Pick the high priority queue first. */ 369 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 370 entry = smi_info->hp_xmit_msgs.next; 371 } else if (!list_empty(&(smi_info->xmit_msgs))) { 372 entry = smi_info->xmit_msgs.next; 373 } 374 375 if (!entry) { 376 smi_info->curr_msg = NULL; 377 rv = SI_SM_IDLE; 378 } else { 379 int err; 380 381 list_del(entry); 382 smi_info->curr_msg = list_entry(entry, 383 struct ipmi_smi_msg, 384 link); 385#ifdef DEBUG_TIMING 386 do_gettimeofday(&t); 387 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 388#endif 389 err = atomic_notifier_call_chain(&xaction_notifier_list, 390 0, smi_info); 391 if (err & NOTIFY_STOP_MASK) { 392 rv = SI_SM_CALL_WITHOUT_DELAY; 393 goto out; 394 } 395 err = smi_info->handlers->start_transaction( 396 smi_info->si_sm, 397 smi_info->curr_msg->data, 398 smi_info->curr_msg->data_size); 399 if (err) 400 return_hosed_msg(smi_info, err); 401 402 rv = SI_SM_CALL_WITHOUT_DELAY; 403 } 404 out: 405 if (!smi_info->run_to_completion) 406 spin_unlock(&(smi_info->msg_lock)); 407 408 return rv; 409} 410 411static void start_enable_irq(struct smi_info *smi_info) 412{ 413 unsigned char msg[2]; 414 415 /* 416 * If we are enabling interrupts, we have to tell the 417 * BMC to use them. 418 */ 419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 420 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 421 422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 423 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 424} 425 426static void start_disable_irq(struct smi_info *smi_info) 427{ 428 unsigned char msg[2]; 429 430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 432 433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 434 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 435} 436 437static void start_clear_flags(struct smi_info *smi_info) 438{ 439 unsigned char msg[3]; 440 441 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 444 msg[2] = WDT_PRE_TIMEOUT_INT; 445 446 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 447 smi_info->si_state = SI_CLEARING_FLAGS; 448} 449 450/* 451 * When we have a situtaion where we run out of memory and cannot 452 * allocate messages, we just leave them in the BMC and run the system 453 * polled until we can allocate some memory. Once we have some 454 * memory, we will re-enable the interrupt. 455 */ 456static inline void disable_si_irq(struct smi_info *smi_info) 457{ 458 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 459 start_disable_irq(smi_info); 460 smi_info->interrupt_disabled = 1; 461 if (!atomic_read(&smi_info->stop_operation)) 462 mod_timer(&smi_info->si_timer, 463 jiffies + SI_TIMEOUT_JIFFIES); 464 } 465} 466 467static inline void enable_si_irq(struct smi_info *smi_info) 468{ 469 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 470 start_enable_irq(smi_info); 471 smi_info->interrupt_disabled = 0; 472 } 473} 474 475static void handle_flags(struct smi_info *smi_info) 476{ 477 retry: 478 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 479 /* Watchdog pre-timeout */ 480 smi_inc_stat(smi_info, watchdog_pretimeouts); 481 482 start_clear_flags(smi_info); 483 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 484 spin_unlock(&(smi_info->si_lock)); 485 ipmi_smi_watchdog_pretimeout(smi_info->intf); 486 spin_lock(&(smi_info->si_lock)); 487 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 488 /* Messages available. */ 489 smi_info->curr_msg = ipmi_alloc_smi_msg(); 490 if (!smi_info->curr_msg) { 491 disable_si_irq(smi_info); 492 smi_info->si_state = SI_NORMAL; 493 return; 494 } 495 enable_si_irq(smi_info); 496 497 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 498 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 499 smi_info->curr_msg->data_size = 2; 500 501 smi_info->handlers->start_transaction( 502 smi_info->si_sm, 503 smi_info->curr_msg->data, 504 smi_info->curr_msg->data_size); 505 smi_info->si_state = SI_GETTING_MESSAGES; 506 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 507 /* Events available. */ 508 smi_info->curr_msg = ipmi_alloc_smi_msg(); 509 if (!smi_info->curr_msg) { 510 disable_si_irq(smi_info); 511 smi_info->si_state = SI_NORMAL; 512 return; 513 } 514 enable_si_irq(smi_info); 515 516 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 517 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 518 smi_info->curr_msg->data_size = 2; 519 520 smi_info->handlers->start_transaction( 521 smi_info->si_sm, 522 smi_info->curr_msg->data, 523 smi_info->curr_msg->data_size); 524 smi_info->si_state = SI_GETTING_EVENTS; 525 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 526 smi_info->oem_data_avail_handler) { 527 if (smi_info->oem_data_avail_handler(smi_info)) 528 goto retry; 529 } else 530 smi_info->si_state = SI_NORMAL; 531} 532 533static void handle_transaction_done(struct smi_info *smi_info) 534{ 535 struct ipmi_smi_msg *msg; 536#ifdef DEBUG_TIMING 537 struct timeval t; 538 539 do_gettimeofday(&t); 540 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 541#endif 542 switch (smi_info->si_state) { 543 case SI_NORMAL: 544 if (!smi_info->curr_msg) 545 break; 546 547 smi_info->curr_msg->rsp_size 548 = smi_info->handlers->get_result( 549 smi_info->si_sm, 550 smi_info->curr_msg->rsp, 551 IPMI_MAX_MSG_LENGTH); 552 553 /* 554 * Do this here becase deliver_recv_msg() releases the 555 * lock, and a new message can be put in during the 556 * time the lock is released. 557 */ 558 msg = smi_info->curr_msg; 559 smi_info->curr_msg = NULL; 560 deliver_recv_msg(smi_info, msg); 561 break; 562 563 case SI_GETTING_FLAGS: 564 { 565 unsigned char msg[4]; 566 unsigned int len; 567 568 /* We got the flags from the SMI, now handle them. */ 569 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 570 if (msg[2] != 0) { 571 /* Error fetching flags, just give up for now. */ 572 smi_info->si_state = SI_NORMAL; 573 } else if (len < 4) { 574 /* 575 * Hmm, no flags. That's technically illegal, but 576 * don't use uninitialized data. 577 */ 578 smi_info->si_state = SI_NORMAL; 579 } else { 580 smi_info->msg_flags = msg[3]; 581 handle_flags(smi_info); 582 } 583 break; 584 } 585 586 case SI_CLEARING_FLAGS: 587 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 588 { 589 unsigned char msg[3]; 590 591 /* We cleared the flags. */ 592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 593 if (msg[2] != 0) { 594 /* Error clearing flags */ 595 dev_warn(smi_info->dev, 596 "Error clearing flags: %2.2x\n", msg[2]); 597 } 598 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 599 start_enable_irq(smi_info); 600 else 601 smi_info->si_state = SI_NORMAL; 602 break; 603 } 604 605 case SI_GETTING_EVENTS: 606 { 607 smi_info->curr_msg->rsp_size 608 = smi_info->handlers->get_result( 609 smi_info->si_sm, 610 smi_info->curr_msg->rsp, 611 IPMI_MAX_MSG_LENGTH); 612 613 /* 614 * Do this here becase deliver_recv_msg() releases the 615 * lock, and a new message can be put in during the 616 * time the lock is released. 617 */ 618 msg = smi_info->curr_msg; 619 smi_info->curr_msg = NULL; 620 if (msg->rsp[2] != 0) { 621 /* Error getting event, probably done. */ 622 msg->done(msg); 623 624 /* Take off the event flag. */ 625 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 626 handle_flags(smi_info); 627 } else { 628 smi_inc_stat(smi_info, events); 629 630 /* 631 * Do this before we deliver the message 632 * because delivering the message releases the 633 * lock and something else can mess with the 634 * state. 635 */ 636 handle_flags(smi_info); 637 638 deliver_recv_msg(smi_info, msg); 639 } 640 break; 641 } 642 643 case SI_GETTING_MESSAGES: 644 { 645 smi_info->curr_msg->rsp_size 646 = smi_info->handlers->get_result( 647 smi_info->si_sm, 648 smi_info->curr_msg->rsp, 649 IPMI_MAX_MSG_LENGTH); 650 651 /* 652 * Do this here becase deliver_recv_msg() releases the 653 * lock, and a new message can be put in during the 654 * time the lock is released. 655 */ 656 msg = smi_info->curr_msg; 657 smi_info->curr_msg = NULL; 658 if (msg->rsp[2] != 0) { 659 /* Error getting event, probably done. */ 660 msg->done(msg); 661 662 /* Take off the msg flag. */ 663 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 664 handle_flags(smi_info); 665 } else { 666 smi_inc_stat(smi_info, incoming_messages); 667 668 /* 669 * Do this before we deliver the message 670 * because delivering the message releases the 671 * lock and something else can mess with the 672 * state. 673 */ 674 handle_flags(smi_info); 675 676 deliver_recv_msg(smi_info, msg); 677 } 678 break; 679 } 680 681 case SI_ENABLE_INTERRUPTS1: 682 { 683 unsigned char msg[4]; 684 685 /* We got the flags from the SMI, now handle them. */ 686 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 687 if (msg[2] != 0) { 688 dev_warn(smi_info->dev, "Could not enable interrupts" 689 ", failed get, using polled mode.\n"); 690 smi_info->si_state = SI_NORMAL; 691 } else { 692 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 693 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 694 msg[2] = (msg[3] | 695 IPMI_BMC_RCV_MSG_INTR | 696 IPMI_BMC_EVT_MSG_INTR); 697 smi_info->handlers->start_transaction( 698 smi_info->si_sm, msg, 3); 699 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 700 } 701 break; 702 } 703 704 case SI_ENABLE_INTERRUPTS2: 705 { 706 unsigned char msg[4]; 707 708 /* We got the flags from the SMI, now handle them. */ 709 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 710 if (msg[2] != 0) 711 dev_warn(smi_info->dev, "Could not enable interrupts" 712 ", failed set, using polled mode.\n"); 713 else 714 smi_info->interrupt_disabled = 0; 715 smi_info->si_state = SI_NORMAL; 716 break; 717 } 718 719 case SI_DISABLE_INTERRUPTS1: 720 { 721 unsigned char msg[4]; 722 723 /* We got the flags from the SMI, now handle them. */ 724 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 725 if (msg[2] != 0) { 726 dev_warn(smi_info->dev, "Could not disable interrupts" 727 ", failed get.\n"); 728 smi_info->si_state = SI_NORMAL; 729 } else { 730 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 731 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 732 msg[2] = (msg[3] & 733 ~(IPMI_BMC_RCV_MSG_INTR | 734 IPMI_BMC_EVT_MSG_INTR)); 735 smi_info->handlers->start_transaction( 736 smi_info->si_sm, msg, 3); 737 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 738 } 739 break; 740 } 741 742 case SI_DISABLE_INTERRUPTS2: 743 { 744 unsigned char msg[4]; 745 746 /* We got the flags from the SMI, now handle them. */ 747 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 748 if (msg[2] != 0) { 749 dev_warn(smi_info->dev, "Could not disable interrupts" 750 ", failed set.\n"); 751 } 752 smi_info->si_state = SI_NORMAL; 753 break; 754 } 755 } 756} 757 758/* 759 * Called on timeouts and events. Timeouts should pass the elapsed 760 * time, interrupts should pass in zero. Must be called with 761 * si_lock held and interrupts disabled. 762 */ 763static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 764 int time) 765{ 766 enum si_sm_result si_sm_result; 767 768 restart: 769 /* 770 * There used to be a loop here that waited a little while 771 * (around 25us) before giving up. That turned out to be 772 * pointless, the minimum delays I was seeing were in the 300us 773 * range, which is far too long to wait in an interrupt. So 774 * we just run until the state machine tells us something 775 * happened or it needs a delay. 776 */ 777 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 778 time = 0; 779 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 780 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 781 782 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 783 smi_inc_stat(smi_info, complete_transactions); 784 785 handle_transaction_done(smi_info); 786 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 787 } else if (si_sm_result == SI_SM_HOSED) { 788 smi_inc_stat(smi_info, hosed_count); 789 790 /* 791 * Do the before return_hosed_msg, because that 792 * releases the lock. 793 */ 794 smi_info->si_state = SI_NORMAL; 795 if (smi_info->curr_msg != NULL) { 796 /* 797 * If we were handling a user message, format 798 * a response to send to the upper layer to 799 * tell it about the error. 800 */ 801 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 802 } 803 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 804 } 805 806 /* 807 * We prefer handling attn over new messages. But don't do 808 * this if there is not yet an upper layer to handle anything. 809 */ 810 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 811 unsigned char msg[2]; 812 813 smi_inc_stat(smi_info, attentions); 814 815 /* 816 * Got a attn, send down a get message flags to see 817 * what's causing it. It would be better to handle 818 * this in the upper layer, but due to the way 819 * interrupts work with the SMI, that's not really 820 * possible. 821 */ 822 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 823 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 824 825 smi_info->handlers->start_transaction( 826 smi_info->si_sm, msg, 2); 827 smi_info->si_state = SI_GETTING_FLAGS; 828 goto restart; 829 } 830 831 /* If we are currently idle, try to start the next message. */ 832 if (si_sm_result == SI_SM_IDLE) { 833 smi_inc_stat(smi_info, idles); 834 835 si_sm_result = start_next_msg(smi_info); 836 if (si_sm_result != SI_SM_IDLE) 837 goto restart; 838 } 839 840 if ((si_sm_result == SI_SM_IDLE) 841 && (atomic_read(&smi_info->req_events))) { 842 /* 843 * We are idle and the upper layer requested that I fetch 844 * events, so do so. 845 */ 846 atomic_set(&smi_info->req_events, 0); 847 848 smi_info->curr_msg = ipmi_alloc_smi_msg(); 849 if (!smi_info->curr_msg) 850 goto out; 851 852 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 853 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 854 smi_info->curr_msg->data_size = 2; 855 856 smi_info->handlers->start_transaction( 857 smi_info->si_sm, 858 smi_info->curr_msg->data, 859 smi_info->curr_msg->data_size); 860 smi_info->si_state = SI_GETTING_EVENTS; 861 goto restart; 862 } 863 out: 864 return si_sm_result; 865} 866 867static void sender(void *send_info, 868 struct ipmi_smi_msg *msg, 869 int priority) 870{ 871 struct smi_info *smi_info = send_info; 872 enum si_sm_result result; 873 unsigned long flags; 874#ifdef DEBUG_TIMING 875 struct timeval t; 876#endif 877 878 if (atomic_read(&smi_info->stop_operation)) { 879 msg->rsp[0] = msg->data[0] | 4; 880 msg->rsp[1] = msg->data[1]; 881 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 882 msg->rsp_size = 3; 883 deliver_recv_msg(smi_info, msg); 884 return; 885 } 886 887#ifdef DEBUG_TIMING 888 do_gettimeofday(&t); 889 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 890#endif 891 892 /* 893 * last_timeout_jiffies is updated here to avoid 894 * smi_timeout() handler passing very large time_diff 895 * value to smi_event_handler() that causes 896 * the send command to abort. 897 */ 898 smi_info->last_timeout_jiffies = jiffies; 899 900 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 901 902 if (smi_info->thread) 903 wake_up_process(smi_info->thread); 904 905 if (smi_info->run_to_completion) { 906 /* 907 * If we are running to completion, then throw it in 908 * the list and run transactions until everything is 909 * clear. Priority doesn't matter here. 910 */ 911 912 /* 913 * Run to completion means we are single-threaded, no 914 * need for locks. 915 */ 916 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 917 918 result = smi_event_handler(smi_info, 0); 919 while (result != SI_SM_IDLE) { 920 udelay(SI_SHORT_TIMEOUT_USEC); 921 result = smi_event_handler(smi_info, 922 SI_SHORT_TIMEOUT_USEC); 923 } 924 return; 925 } 926 927 spin_lock_irqsave(&smi_info->msg_lock, flags); 928 if (priority > 0) 929 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 930 else 931 list_add_tail(&msg->link, &smi_info->xmit_msgs); 932 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 933 934 spin_lock_irqsave(&smi_info->si_lock, flags); 935 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 936 start_next_msg(smi_info); 937 spin_unlock_irqrestore(&smi_info->si_lock, flags); 938} 939 940static void set_run_to_completion(void *send_info, int i_run_to_completion) 941{ 942 struct smi_info *smi_info = send_info; 943 enum si_sm_result result; 944 945 smi_info->run_to_completion = i_run_to_completion; 946 if (i_run_to_completion) { 947 result = smi_event_handler(smi_info, 0); 948 while (result != SI_SM_IDLE) { 949 udelay(SI_SHORT_TIMEOUT_USEC); 950 result = smi_event_handler(smi_info, 951 SI_SHORT_TIMEOUT_USEC); 952 } 953 } 954} 955 956/* 957 * Use -1 in the nsec value of the busy waiting timespec to tell that 958 * we are spinning in kipmid looking for something and not delaying 959 * between checks 960 */ 961static inline void ipmi_si_set_not_busy(struct timespec *ts) 962{ 963 ts->tv_nsec = -1; 964} 965static inline int ipmi_si_is_busy(struct timespec *ts) 966{ 967 return ts->tv_nsec != -1; 968} 969 970static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 971 const struct smi_info *smi_info, 972 struct timespec *busy_until) 973{ 974 unsigned int max_busy_us = 0; 975 976 if (smi_info->intf_num < num_max_busy_us) 977 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 978 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 979 ipmi_si_set_not_busy(busy_until); 980 else if (!ipmi_si_is_busy(busy_until)) { 981 getnstimeofday(busy_until); 982 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 983 } else { 984 struct timespec now; 985 getnstimeofday(&now); 986 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 987 ipmi_si_set_not_busy(busy_until); 988 return 0; 989 } 990 } 991 return 1; 992} 993 994 995/* 996 * A busy-waiting loop for speeding up IPMI operation. 997 * 998 * Lousy hardware makes this hard. This is only enabled for systems 999 * that are not BT and do not have interrupts. It starts spinning 1000 * when an operation is complete or until max_busy tells it to stop 1001 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1002 * Documentation/IPMI.txt for details. 1003 */ 1004static int ipmi_thread(void *data) 1005{ 1006 struct smi_info *smi_info = data; 1007 unsigned long flags; 1008 enum si_sm_result smi_result; 1009 struct timespec busy_until; 1010 1011 ipmi_si_set_not_busy(&busy_until); 1012 set_user_nice(current, 19); 1013 while (!kthread_should_stop()) { 1014 int busy_wait; 1015 1016 spin_lock_irqsave(&(smi_info->si_lock), flags); 1017 smi_result = smi_event_handler(smi_info, 0); 1018 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1019 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1020 &busy_until); 1021 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1022 ; /* do nothing */ 1023 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1024 schedule(); 1025 else if (smi_result == SI_SM_IDLE) 1026 schedule_timeout_interruptible(100); 1027 else 1028 schedule_timeout_interruptible(1); 1029 } 1030 return 0; 1031} 1032 1033 1034static void poll(void *send_info) 1035{ 1036 struct smi_info *smi_info = send_info; 1037 unsigned long flags; 1038 1039 /* 1040 * Make sure there is some delay in the poll loop so we can 1041 * drive time forward and timeout things. 1042 */ 1043 udelay(10); 1044 spin_lock_irqsave(&smi_info->si_lock, flags); 1045 smi_event_handler(smi_info, 10); 1046 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1047} 1048 1049static void request_events(void *send_info) 1050{ 1051 struct smi_info *smi_info = send_info; 1052 1053 if (atomic_read(&smi_info->stop_operation) || 1054 !smi_info->has_event_buffer) 1055 return; 1056 1057 atomic_set(&smi_info->req_events, 1); 1058} 1059 1060static int initialized; 1061 1062static void smi_timeout(unsigned long data) 1063{ 1064 struct smi_info *smi_info = (struct smi_info *) data; 1065 enum si_sm_result smi_result; 1066 unsigned long flags; 1067 unsigned long jiffies_now; 1068 long time_diff; 1069 long timeout; 1070#ifdef DEBUG_TIMING 1071 struct timeval t; 1072#endif 1073 1074 spin_lock_irqsave(&(smi_info->si_lock), flags); 1075#ifdef DEBUG_TIMING 1076 do_gettimeofday(&t); 1077 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1078#endif 1079 jiffies_now = jiffies; 1080 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1081 * SI_USEC_PER_JIFFY); 1082 smi_result = smi_event_handler(smi_info, time_diff); 1083 1084 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1085 1086 smi_info->last_timeout_jiffies = jiffies_now; 1087 1088 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1089 /* Running with interrupts, only do long timeouts. */ 1090 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1091 smi_inc_stat(smi_info, long_timeouts); 1092 goto do_mod_timer; 1093 } 1094 1095 /* 1096 * If the state machine asks for a short delay, then shorten 1097 * the timer timeout. 1098 */ 1099 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1100 smi_inc_stat(smi_info, short_timeouts); 1101 timeout = jiffies + 1; 1102 } else { 1103 smi_inc_stat(smi_info, long_timeouts); 1104 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1105 } 1106 1107 do_mod_timer: 1108 if (smi_result != SI_SM_IDLE) 1109 mod_timer(&(smi_info->si_timer), timeout); 1110} 1111 1112static irqreturn_t si_irq_handler(int irq, void *data) 1113{ 1114 struct smi_info *smi_info = data; 1115 unsigned long flags; 1116#ifdef DEBUG_TIMING 1117 struct timeval t; 1118#endif 1119 1120 spin_lock_irqsave(&(smi_info->si_lock), flags); 1121 1122 smi_inc_stat(smi_info, interrupts); 1123 1124#ifdef DEBUG_TIMING 1125 do_gettimeofday(&t); 1126 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1127#endif 1128 smi_event_handler(smi_info, 0); 1129 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1130 return IRQ_HANDLED; 1131} 1132 1133static irqreturn_t si_bt_irq_handler(int irq, void *data) 1134{ 1135 struct smi_info *smi_info = data; 1136 /* We need to clear the IRQ flag for the BT interface. */ 1137 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1138 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1139 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1140 return si_irq_handler(irq, data); 1141} 1142 1143static int smi_start_processing(void *send_info, 1144 ipmi_smi_t intf) 1145{ 1146 struct smi_info *new_smi = send_info; 1147 int enable = 0; 1148 1149 new_smi->intf = intf; 1150 1151 /* Try to claim any interrupts. */ 1152 if (new_smi->irq_setup) 1153 new_smi->irq_setup(new_smi); 1154 1155 /* Set up the timer that drives the interface. */ 1156 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1157 new_smi->last_timeout_jiffies = jiffies; 1158 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1159 1160 /* 1161 * Check if the user forcefully enabled the daemon. 1162 */ 1163 if (new_smi->intf_num < num_force_kipmid) 1164 enable = force_kipmid[new_smi->intf_num]; 1165 /* 1166 * The BT interface is efficient enough to not need a thread, 1167 * and there is no need for a thread if we have interrupts. 1168 */ 1169 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1170 enable = 1; 1171 1172 if (enable) { 1173 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1174 "kipmi%d", new_smi->intf_num); 1175 if (IS_ERR(new_smi->thread)) { 1176 dev_notice(new_smi->dev, "Could not start" 1177 " kernel thread due to error %ld, only using" 1178 " timers to drive the interface\n", 1179 PTR_ERR(new_smi->thread)); 1180 new_smi->thread = NULL; 1181 } 1182 } 1183 1184 return 0; 1185} 1186 1187static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1188{ 1189 struct smi_info *smi = send_info; 1190 1191 data->addr_src = smi->addr_source; 1192 data->dev = smi->dev; 1193 data->addr_info = smi->addr_info; 1194 get_device(smi->dev); 1195 1196 return 0; 1197} 1198 1199static void set_maintenance_mode(void *send_info, int enable) 1200{ 1201 struct smi_info *smi_info = send_info; 1202 1203 if (!enable) 1204 atomic_set(&smi_info->req_events, 0); 1205} 1206 1207static struct ipmi_smi_handlers handlers = { 1208 .owner = THIS_MODULE, 1209 .start_processing = smi_start_processing, 1210 .get_smi_info = get_smi_info, 1211 .sender = sender, 1212 .request_events = request_events, 1213 .set_maintenance_mode = set_maintenance_mode, 1214 .set_run_to_completion = set_run_to_completion, 1215 .poll = poll, 1216}; 1217 1218/* 1219 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1220 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1221 */ 1222 1223static LIST_HEAD(smi_infos); 1224static DEFINE_MUTEX(smi_infos_lock); 1225static int smi_num; /* Used to sequence the SMIs */ 1226 1227#define DEFAULT_REGSPACING 1 1228#define DEFAULT_REGSIZE 1 1229 1230static int si_trydefaults = 1; 1231static char *si_type[SI_MAX_PARMS]; 1232#define MAX_SI_TYPE_STR 30 1233static char si_type_str[MAX_SI_TYPE_STR]; 1234static unsigned long addrs[SI_MAX_PARMS]; 1235static unsigned int num_addrs; 1236static unsigned int ports[SI_MAX_PARMS]; 1237static unsigned int num_ports; 1238static int irqs[SI_MAX_PARMS]; 1239static unsigned int num_irqs; 1240static int regspacings[SI_MAX_PARMS]; 1241static unsigned int num_regspacings; 1242static int regsizes[SI_MAX_PARMS]; 1243static unsigned int num_regsizes; 1244static int regshifts[SI_MAX_PARMS]; 1245static unsigned int num_regshifts; 1246static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1247static unsigned int num_slave_addrs; 1248 1249#define IPMI_IO_ADDR_SPACE 0 1250#define IPMI_MEM_ADDR_SPACE 1 1251static char *addr_space_to_str[] = { "i/o", "mem" }; 1252 1253static int hotmod_handler(const char *val, struct kernel_param *kp); 1254 1255module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1256MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1257 " Documentation/IPMI.txt in the kernel sources for the" 1258 " gory details."); 1259 1260module_param_named(trydefaults, si_trydefaults, bool, 0); 1261MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1262 " default scan of the KCS and SMIC interface at the standard" 1263 " address"); 1264module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1265MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1266 " interface separated by commas. The types are 'kcs'," 1267 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1268 " the first interface to kcs and the second to bt"); 1269module_param_array(addrs, ulong, &num_addrs, 0); 1270MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1271 " addresses separated by commas. Only use if an interface" 1272 " is in memory. Otherwise, set it to zero or leave" 1273 " it blank."); 1274module_param_array(ports, uint, &num_ports, 0); 1275MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1276 " addresses separated by commas. Only use if an interface" 1277 " is a port. Otherwise, set it to zero or leave" 1278 " it blank."); 1279module_param_array(irqs, int, &num_irqs, 0); 1280MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1281 " addresses separated by commas. Only use if an interface" 1282 " has an interrupt. Otherwise, set it to zero or leave" 1283 " it blank."); 1284module_param_array(regspacings, int, &num_regspacings, 0); 1285MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1286 " and each successive register used by the interface. For" 1287 " instance, if the start address is 0xca2 and the spacing" 1288 " is 2, then the second address is at 0xca4. Defaults" 1289 " to 1."); 1290module_param_array(regsizes, int, &num_regsizes, 0); 1291MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1292 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1293 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1294 " the 8-bit IPMI register has to be read from a larger" 1295 " register."); 1296module_param_array(regshifts, int, &num_regshifts, 0); 1297MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1298 " IPMI register, in bits. For instance, if the data" 1299 " is read from a 32-bit word and the IPMI data is in" 1300 " bit 8-15, then the shift would be 8"); 1301module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1302MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1303 " the controller. Normally this is 0x20, but can be" 1304 " overridden by this parm. This is an array indexed" 1305 " by interface number."); 1306module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1307MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1308 " disabled(0). Normally the IPMI driver auto-detects" 1309 " this, but the value may be overridden by this parm."); 1310module_param(unload_when_empty, int, 0); 1311MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1312 " specified or found, default is 1. Setting to 0" 1313 " is useful for hot add of devices using hotmod."); 1314module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1315MODULE_PARM_DESC(kipmid_max_busy_us, 1316 "Max time (in microseconds) to busy-wait for IPMI data before" 1317 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1318 " if kipmid is using up a lot of CPU time."); 1319 1320 1321static void std_irq_cleanup(struct smi_info *info) 1322{ 1323 if (info->si_type == SI_BT) 1324 /* Disable the interrupt in the BT interface. */ 1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1326 free_irq(info->irq, info); 1327} 1328 1329static int std_irq_setup(struct smi_info *info) 1330{ 1331 int rv; 1332 1333 if (!info->irq) 1334 return 0; 1335 1336 if (info->si_type == SI_BT) { 1337 rv = request_irq(info->irq, 1338 si_bt_irq_handler, 1339 IRQF_SHARED | IRQF_DISABLED, 1340 DEVICE_NAME, 1341 info); 1342 if (!rv) 1343 /* Enable the interrupt in the BT interface. */ 1344 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1345 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1346 } else 1347 rv = request_irq(info->irq, 1348 si_irq_handler, 1349 IRQF_SHARED | IRQF_DISABLED, 1350 DEVICE_NAME, 1351 info); 1352 if (rv) { 1353 dev_warn(info->dev, "%s unable to claim interrupt %d," 1354 " running polled\n", 1355 DEVICE_NAME, info->irq); 1356 info->irq = 0; 1357 } else { 1358 info->irq_cleanup = std_irq_cleanup; 1359 dev_info(info->dev, "Using irq %d\n", info->irq); 1360 } 1361 1362 return rv; 1363} 1364 1365static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1366{ 1367 unsigned int addr = io->addr_data; 1368 1369 return inb(addr + (offset * io->regspacing)); 1370} 1371 1372static void port_outb(struct si_sm_io *io, unsigned int offset, 1373 unsigned char b) 1374{ 1375 unsigned int addr = io->addr_data; 1376 1377 outb(b, addr + (offset * io->regspacing)); 1378} 1379 1380static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1381{ 1382 unsigned int addr = io->addr_data; 1383 1384 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1385} 1386 1387static void port_outw(struct si_sm_io *io, unsigned int offset, 1388 unsigned char b) 1389{ 1390 unsigned int addr = io->addr_data; 1391 1392 outw(b << io->regshift, addr + (offset * io->regspacing)); 1393} 1394 1395static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1396{ 1397 unsigned int addr = io->addr_data; 1398 1399 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1400} 1401 1402static void port_outl(struct si_sm_io *io, unsigned int offset, 1403 unsigned char b) 1404{ 1405 unsigned int addr = io->addr_data; 1406 1407 outl(b << io->regshift, addr+(offset * io->regspacing)); 1408} 1409 1410static void port_cleanup(struct smi_info *info) 1411{ 1412 unsigned int addr = info->io.addr_data; 1413 int idx; 1414 1415 if (addr) { 1416 for (idx = 0; idx < info->io_size; idx++) 1417 release_region(addr + idx * info->io.regspacing, 1418 info->io.regsize); 1419 } 1420} 1421 1422static int port_setup(struct smi_info *info) 1423{ 1424 unsigned int addr = info->io.addr_data; 1425 int idx; 1426 1427 if (!addr) 1428 return -ENODEV; 1429 1430 info->io_cleanup = port_cleanup; 1431 1432 /* 1433 * Figure out the actual inb/inw/inl/etc routine to use based 1434 * upon the register size. 1435 */ 1436 switch (info->io.regsize) { 1437 case 1: 1438 info->io.inputb = port_inb; 1439 info->io.outputb = port_outb; 1440 break; 1441 case 2: 1442 info->io.inputb = port_inw; 1443 info->io.outputb = port_outw; 1444 break; 1445 case 4: 1446 info->io.inputb = port_inl; 1447 info->io.outputb = port_outl; 1448 break; 1449 default: 1450 dev_warn(info->dev, "Invalid register size: %d\n", 1451 info->io.regsize); 1452 return -EINVAL; 1453 } 1454 1455 /* 1456 * Some BIOSes reserve disjoint I/O regions in their ACPI 1457 * tables. This causes problems when trying to register the 1458 * entire I/O region. Therefore we must register each I/O 1459 * port separately. 1460 */ 1461 for (idx = 0; idx < info->io_size; idx++) { 1462 if (request_region(addr + idx * info->io.regspacing, 1463 info->io.regsize, DEVICE_NAME) == NULL) { 1464 /* Undo allocations */ 1465 while (idx--) { 1466 release_region(addr + idx * info->io.regspacing, 1467 info->io.regsize); 1468 } 1469 return -EIO; 1470 } 1471 } 1472 return 0; 1473} 1474 1475static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1476{ 1477 return readb((io->addr)+(offset * io->regspacing)); 1478} 1479 1480static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1481 unsigned char b) 1482{ 1483 writeb(b, (io->addr)+(offset * io->regspacing)); 1484} 1485 1486static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1487{ 1488 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1489 & 0xff; 1490} 1491 1492static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1493 unsigned char b) 1494{ 1495 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1496} 1497 1498static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1499{ 1500 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1501 & 0xff; 1502} 1503 1504static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1505 unsigned char b) 1506{ 1507 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1508} 1509 1510#ifdef readq 1511static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1512{ 1513 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1514 & 0xff; 1515} 1516 1517static void mem_outq(struct si_sm_io *io, unsigned int offset, 1518 unsigned char b) 1519{ 1520 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1521} 1522#endif 1523 1524static void mem_cleanup(struct smi_info *info) 1525{ 1526 unsigned long addr = info->io.addr_data; 1527 int mapsize; 1528 1529 if (info->io.addr) { 1530 iounmap(info->io.addr); 1531 1532 mapsize = ((info->io_size * info->io.regspacing) 1533 - (info->io.regspacing - info->io.regsize)); 1534 1535 release_mem_region(addr, mapsize); 1536 } 1537} 1538 1539static int mem_setup(struct smi_info *info) 1540{ 1541 unsigned long addr = info->io.addr_data; 1542 int mapsize; 1543 1544 if (!addr) 1545 return -ENODEV; 1546 1547 info->io_cleanup = mem_cleanup; 1548 1549 /* 1550 * Figure out the actual readb/readw/readl/etc routine to use based 1551 * upon the register size. 1552 */ 1553 switch (info->io.regsize) { 1554 case 1: 1555 info->io.inputb = intf_mem_inb; 1556 info->io.outputb = intf_mem_outb; 1557 break; 1558 case 2: 1559 info->io.inputb = intf_mem_inw; 1560 info->io.outputb = intf_mem_outw; 1561 break; 1562 case 4: 1563 info->io.inputb = intf_mem_inl; 1564 info->io.outputb = intf_mem_outl; 1565 break; 1566#ifdef readq 1567 case 8: 1568 info->io.inputb = mem_inq; 1569 info->io.outputb = mem_outq; 1570 break; 1571#endif 1572 default: 1573 dev_warn(info->dev, "Invalid register size: %d\n", 1574 info->io.regsize); 1575 return -EINVAL; 1576 } 1577 1578 /* 1579 * Calculate the total amount of memory to claim. This is an 1580 * unusual looking calculation, but it avoids claiming any 1581 * more memory than it has to. It will claim everything 1582 * between the first address to the end of the last full 1583 * register. 1584 */ 1585 mapsize = ((info->io_size * info->io.regspacing) 1586 - (info->io.regspacing - info->io.regsize)); 1587 1588 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1589 return -EIO; 1590 1591 info->io.addr = ioremap(addr, mapsize); 1592 if (info->io.addr == NULL) { 1593 release_mem_region(addr, mapsize); 1594 return -EIO; 1595 } 1596 return 0; 1597} 1598 1599/* 1600 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1601 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1602 * Options are: 1603 * rsp=<regspacing> 1604 * rsi=<regsize> 1605 * rsh=<regshift> 1606 * irq=<irq> 1607 * ipmb=<ipmb addr> 1608 */ 1609enum hotmod_op { HM_ADD, HM_REMOVE }; 1610struct hotmod_vals { 1611 char *name; 1612 int val; 1613}; 1614static struct hotmod_vals hotmod_ops[] = { 1615 { "add", HM_ADD }, 1616 { "remove", HM_REMOVE }, 1617 { NULL } 1618}; 1619static struct hotmod_vals hotmod_si[] = { 1620 { "kcs", SI_KCS }, 1621 { "smic", SI_SMIC }, 1622 { "bt", SI_BT }, 1623 { NULL } 1624}; 1625static struct hotmod_vals hotmod_as[] = { 1626 { "mem", IPMI_MEM_ADDR_SPACE }, 1627 { "i/o", IPMI_IO_ADDR_SPACE }, 1628 { NULL } 1629}; 1630 1631static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1632{ 1633 char *s; 1634 int i; 1635 1636 s = strchr(*curr, ','); 1637 if (!s) { 1638 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1639 return -EINVAL; 1640 } 1641 *s = '\0'; 1642 s++; 1643 for (i = 0; hotmod_ops[i].name; i++) { 1644 if (strcmp(*curr, v[i].name) == 0) { 1645 *val = v[i].val; 1646 *curr = s; 1647 return 0; 1648 } 1649 } 1650 1651 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1652 return -EINVAL; 1653} 1654 1655static int check_hotmod_int_op(const char *curr, const char *option, 1656 const char *name, int *val) 1657{ 1658 char *n; 1659 1660 if (strcmp(curr, name) == 0) { 1661 if (!option) { 1662 printk(KERN_WARNING PFX 1663 "No option given for '%s'\n", 1664 curr); 1665 return -EINVAL; 1666 } 1667 *val = simple_strtoul(option, &n, 0); 1668 if ((*n != '\0') || (*option == '\0')) { 1669 printk(KERN_WARNING PFX 1670 "Bad option given for '%s'\n", 1671 curr); 1672 return -EINVAL; 1673 } 1674 return 1; 1675 } 1676 return 0; 1677} 1678 1679static struct smi_info *smi_info_alloc(void) 1680{ 1681 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1682 1683 if (info) { 1684 spin_lock_init(&info->si_lock); 1685 spin_lock_init(&info->msg_lock); 1686 } 1687 return info; 1688} 1689 1690static int hotmod_handler(const char *val, struct kernel_param *kp) 1691{ 1692 char *str = kstrdup(val, GFP_KERNEL); 1693 int rv; 1694 char *next, *curr, *s, *n, *o; 1695 enum hotmod_op op; 1696 enum si_type si_type; 1697 int addr_space; 1698 unsigned long addr; 1699 int regspacing; 1700 int regsize; 1701 int regshift; 1702 int irq; 1703 int ipmb; 1704 int ival; 1705 int len; 1706 struct smi_info *info; 1707 1708 if (!str) 1709 return -ENOMEM; 1710 1711 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1712 len = strlen(str); 1713 ival = len - 1; 1714 while ((ival >= 0) && isspace(str[ival])) { 1715 str[ival] = '\0'; 1716 ival--; 1717 } 1718 1719 for (curr = str; curr; curr = next) { 1720 regspacing = 1; 1721 regsize = 1; 1722 regshift = 0; 1723 irq = 0; 1724 ipmb = 0; /* Choose the default if not specified */ 1725 1726 next = strchr(curr, ':'); 1727 if (next) { 1728 *next = '\0'; 1729 next++; 1730 } 1731 1732 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1733 if (rv) 1734 break; 1735 op = ival; 1736 1737 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1738 if (rv) 1739 break; 1740 si_type = ival; 1741 1742 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1743 if (rv) 1744 break; 1745 1746 s = strchr(curr, ','); 1747 if (s) { 1748 *s = '\0'; 1749 s++; 1750 } 1751 addr = simple_strtoul(curr, &n, 0); 1752 if ((*n != '\0') || (*curr == '\0')) { 1753 printk(KERN_WARNING PFX "Invalid hotmod address" 1754 " '%s'\n", curr); 1755 break; 1756 } 1757 1758 while (s) { 1759 curr = s; 1760 s = strchr(curr, ','); 1761 if (s) { 1762 *s = '\0'; 1763 s++; 1764 } 1765 o = strchr(curr, '='); 1766 if (o) { 1767 *o = '\0'; 1768 o++; 1769 } 1770 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1771 if (rv < 0) 1772 goto out; 1773 else if (rv) 1774 continue; 1775 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1776 if (rv < 0) 1777 goto out; 1778 else if (rv) 1779 continue; 1780 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1781 if (rv < 0) 1782 goto out; 1783 else if (rv) 1784 continue; 1785 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1786 if (rv < 0) 1787 goto out; 1788 else if (rv) 1789 continue; 1790 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1791 if (rv < 0) 1792 goto out; 1793 else if (rv) 1794 continue; 1795 1796 rv = -EINVAL; 1797 printk(KERN_WARNING PFX 1798 "Invalid hotmod option '%s'\n", 1799 curr); 1800 goto out; 1801 } 1802 1803 if (op == HM_ADD) { 1804 info = smi_info_alloc(); 1805 if (!info) { 1806 rv = -ENOMEM; 1807 goto out; 1808 } 1809 1810 info->addr_source = SI_HOTMOD; 1811 info->si_type = si_type; 1812 info->io.addr_data = addr; 1813 info->io.addr_type = addr_space; 1814 if (addr_space == IPMI_MEM_ADDR_SPACE) 1815 info->io_setup = mem_setup; 1816 else 1817 info->io_setup = port_setup; 1818 1819 info->io.addr = NULL; 1820 info->io.regspacing = regspacing; 1821 if (!info->io.regspacing) 1822 info->io.regspacing = DEFAULT_REGSPACING; 1823 info->io.regsize = regsize; 1824 if (!info->io.regsize) 1825 info->io.regsize = DEFAULT_REGSPACING; 1826 info->io.regshift = regshift; 1827 info->irq = irq; 1828 if (info->irq) 1829 info->irq_setup = std_irq_setup; 1830 info->slave_addr = ipmb; 1831 1832 if (!add_smi(info)) { 1833 if (try_smi_init(info)) 1834 cleanup_one_si(info); 1835 } else { 1836 kfree(info); 1837 } 1838 } else { 1839 /* remove */ 1840 struct smi_info *e, *tmp_e; 1841 1842 mutex_lock(&smi_infos_lock); 1843 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1844 if (e->io.addr_type != addr_space) 1845 continue; 1846 if (e->si_type != si_type) 1847 continue; 1848 if (e->io.addr_data == addr) 1849 cleanup_one_si(e); 1850 } 1851 mutex_unlock(&smi_infos_lock); 1852 } 1853 } 1854 rv = len; 1855 out: 1856 kfree(str); 1857 return rv; 1858} 1859 1860static int __devinit hardcode_find_bmc(void) 1861{ 1862 int ret = -ENODEV; 1863 int i; 1864 struct smi_info *info; 1865 1866 for (i = 0; i < SI_MAX_PARMS; i++) { 1867 if (!ports[i] && !addrs[i]) 1868 continue; 1869 1870 info = smi_info_alloc(); 1871 if (!info) 1872 return -ENOMEM; 1873 1874 info->addr_source = SI_HARDCODED; 1875 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1876 1877 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1878 info->si_type = SI_KCS; 1879 } else if (strcmp(si_type[i], "smic") == 0) { 1880 info->si_type = SI_SMIC; 1881 } else if (strcmp(si_type[i], "bt") == 0) { 1882 info->si_type = SI_BT; 1883 } else { 1884 printk(KERN_WARNING PFX "Interface type specified " 1885 "for interface %d, was invalid: %s\n", 1886 i, si_type[i]); 1887 kfree(info); 1888 continue; 1889 } 1890 1891 if (ports[i]) { 1892 /* An I/O port */ 1893 info->io_setup = port_setup; 1894 info->io.addr_data = ports[i]; 1895 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1896 } else if (addrs[i]) { 1897 /* A memory port */ 1898 info->io_setup = mem_setup; 1899 info->io.addr_data = addrs[i]; 1900 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1901 } e…
Large files files are truncated, but you can click here to view the full file