/arch/x86/include/asm/i387.h
https://bitbucket.org/ndreys/linux-sunxi · C++ Header · 627 lines · 394 code · 72 blank · 161 comment · 37 complexity · 96f776a9fa69db8fb8d4ccdfeb76f546 MD5 · raw file
- /*
- * Copyright (C) 1994 Linus Torvalds
- *
- * Pentium III FXSR, SSE support
- * General FPU state handling cleanups
- * Gareth Hughes <gareth@valinux.com>, May 2000
- * x86-64 work by Andi Kleen 2002
- */
- #ifndef _ASM_X86_I387_H
- #define _ASM_X86_I387_H
- #ifndef __ASSEMBLY__
- #include <linux/sched.h>
- #include <linux/kernel_stat.h>
- #include <linux/regset.h>
- #include <linux/hardirq.h>
- #include <linux/slab.h>
- #include <asm/asm.h>
- #include <asm/cpufeature.h>
- #include <asm/processor.h>
- #include <asm/sigcontext.h>
- #include <asm/user.h>
- #include <asm/uaccess.h>
- #include <asm/xsave.h>
- extern unsigned int sig_xstate_size;
- extern void fpu_init(void);
- extern void mxcsr_feature_mask_init(void);
- extern int init_fpu(struct task_struct *child);
- extern void __math_state_restore(struct task_struct *);
- extern void math_state_restore(void);
- extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
- extern user_regset_active_fn fpregs_active, xfpregs_active;
- extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
- xstateregs_get;
- extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
- xstateregs_set;
- /*
- * xstateregs_active == fpregs_active. Please refer to the comment
- * at the definition of fpregs_active.
- */
- #define xstateregs_active fpregs_active
- extern struct _fpx_sw_bytes fx_sw_reserved;
- #ifdef CONFIG_IA32_EMULATION
- extern unsigned int sig_xstate_ia32_size;
- extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
- struct _fpstate_ia32;
- struct _xstate_ia32;
- extern int save_i387_xstate_ia32(void __user *buf);
- extern int restore_i387_xstate_ia32(void __user *buf);
- #endif
- #ifdef CONFIG_MATH_EMULATION
- extern void finit_soft_fpu(struct i387_soft_struct *soft);
- #else
- static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
- #endif
- #define X87_FSW_ES (1 << 7) /* Exception Summary */
- static __always_inline __pure bool use_xsaveopt(void)
- {
- return static_cpu_has(X86_FEATURE_XSAVEOPT);
- }
- static __always_inline __pure bool use_xsave(void)
- {
- return static_cpu_has(X86_FEATURE_XSAVE);
- }
- static __always_inline __pure bool use_fxsr(void)
- {
- return static_cpu_has(X86_FEATURE_FXSR);
- }
- extern void __sanitize_i387_state(struct task_struct *);
- static inline void sanitize_i387_state(struct task_struct *tsk)
- {
- if (!use_xsaveopt())
- return;
- __sanitize_i387_state(tsk);
- }
- #ifdef CONFIG_X86_64
- static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
- {
- int err;
- /* See comment in fxsave() below. */
- #ifdef CONFIG_AS_FXSAVEQ
- asm volatile("1: fxrstorq %[fx]\n\t"
- "2:\n"
- ".section .fixup,\"ax\"\n"
- "3: movl $-1,%[err]\n"
- " jmp 2b\n"
- ".previous\n"
- _ASM_EXTABLE(1b, 3b)
- : [err] "=r" (err)
- : [fx] "m" (*fx), "0" (0));
- #else
- asm volatile("1: rex64/fxrstor (%[fx])\n\t"
- "2:\n"
- ".section .fixup,\"ax\"\n"
- "3: movl $-1,%[err]\n"
- " jmp 2b\n"
- ".previous\n"
- _ASM_EXTABLE(1b, 3b)
- : [err] "=r" (err)
- : [fx] "R" (fx), "m" (*fx), "0" (0));
- #endif
- return err;
- }
- static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
- {
- int err;
- /*
- * Clear the bytes not touched by the fxsave and reserved
- * for the SW usage.
- */
- err = __clear_user(&fx->sw_reserved,
- sizeof(struct _fpx_sw_bytes));
- if (unlikely(err))
- return -EFAULT;
- /* See comment in fxsave() below. */
- #ifdef CONFIG_AS_FXSAVEQ
- asm volatile("1: fxsaveq %[fx]\n\t"
- "2:\n"
- ".section .fixup,\"ax\"\n"
- "3: movl $-1,%[err]\n"
- " jmp 2b\n"
- ".previous\n"
- _ASM_EXTABLE(1b, 3b)
- : [err] "=r" (err), [fx] "=m" (*fx)
- : "0" (0));
- #else
- asm volatile("1: rex64/fxsave (%[fx])\n\t"
- "2:\n"
- ".section .fixup,\"ax\"\n"
- "3: movl $-1,%[err]\n"
- " jmp 2b\n"
- ".previous\n"
- _ASM_EXTABLE(1b, 3b)
- : [err] "=r" (err), "=m" (*fx)
- : [fx] "R" (fx), "0" (0));
- #endif
- if (unlikely(err) &&
- __clear_user(fx, sizeof(struct i387_fxsave_struct)))
- err = -EFAULT;
- /* No need to clear here because the caller clears USED_MATH */
- return err;
- }
- static inline void fpu_fxsave(struct fpu *fpu)
- {
- /* Using "rex64; fxsave %0" is broken because, if the memory operand
- uses any extended registers for addressing, a second REX prefix
- will be generated (to the assembler, rex64 followed by semicolon
- is a separate instruction), and hence the 64-bitness is lost. */
- #ifdef CONFIG_AS_FXSAVEQ
- /* Using "fxsaveq %0" would be the ideal choice, but is only supported
- starting with gas 2.16. */
- __asm__ __volatile__("fxsaveq %0"
- : "=m" (fpu->state->fxsave));
- #else
- /* Using, as a workaround, the properly prefixed form below isn't
- accepted by any binutils version so far released, complaining that
- the same type of prefix is used twice if an extended register is
- needed for addressing (fix submitted to mainline 2005-11-21).
- asm volatile("rex64/fxsave %0"
- : "=m" (fpu->state->fxsave));
- This, however, we can work around by forcing the compiler to select
- an addressing mode that doesn't require extended registers. */
- asm volatile("rex64/fxsave (%[fx])"
- : "=m" (fpu->state->fxsave)
- : [fx] "R" (&fpu->state->fxsave));
- #endif
- }
- #else /* CONFIG_X86_32 */
- /* perform fxrstor iff the processor has extended states, otherwise frstor */
- static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
- {
- /*
- * The "nop" is needed to make the instructions the same
- * length.
- */
- alternative_input(
- "nop ; frstor %1",
- "fxrstor %1",
- X86_FEATURE_FXSR,
- "m" (*fx));
- return 0;
- }
- static inline void fpu_fxsave(struct fpu *fpu)
- {
- asm volatile("fxsave %[fx]"
- : [fx] "=m" (fpu->state->fxsave));
- }
- #endif /* CONFIG_X86_64 */
- /*
- * These must be called with preempt disabled. Returns
- * 'true' if the FPU state is still intact.
- */
- static inline int fpu_save_init(struct fpu *fpu)
- {
- if (use_xsave()) {
- fpu_xsave(fpu);
- /*
- * xsave header may indicate the init state of the FP.
- */
- if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
- return 1;
- } else if (use_fxsr()) {
- fpu_fxsave(fpu);
- } else {
- asm volatile("fnsave %[fx]; fwait"
- : [fx] "=m" (fpu->state->fsave));
- return 0;
- }
- /*
- * If exceptions are pending, we need to clear them so
- * that we don't randomly get exceptions later.
- *
- * FIXME! Is this perhaps only true for the old-style
- * irq13 case? Maybe we could leave the x87 state
- * intact otherwise?
- */
- if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
- asm volatile("fnclex");
- return 0;
- }
- return 1;
- }
- static inline int __save_init_fpu(struct task_struct *tsk)
- {
- return fpu_save_init(&tsk->thread.fpu);
- }
- static inline int fpu_fxrstor_checking(struct fpu *fpu)
- {
- return fxrstor_checking(&fpu->state->fxsave);
- }
- static inline int fpu_restore_checking(struct fpu *fpu)
- {
- if (use_xsave())
- return fpu_xrstor_checking(fpu);
- else
- return fpu_fxrstor_checking(fpu);
- }
- static inline int restore_fpu_checking(struct task_struct *tsk)
- {
- return fpu_restore_checking(&tsk->thread.fpu);
- }
- /*
- * Software FPU state helpers. Careful: these need to
- * be preemption protection *and* they need to be
- * properly paired with the CR0.TS changes!
- */
- static inline int __thread_has_fpu(struct task_struct *tsk)
- {
- return tsk->thread.has_fpu;
- }
- /* Must be paired with an 'stts' after! */
- static inline void __thread_clear_has_fpu(struct task_struct *tsk)
- {
- tsk->thread.has_fpu = 0;
- }
- /* Must be paired with a 'clts' before! */
- static inline void __thread_set_has_fpu(struct task_struct *tsk)
- {
- tsk->thread.has_fpu = 1;
- }
- /*
- * Encapsulate the CR0.TS handling together with the
- * software flag.
- *
- * These generally need preemption protection to work,
- * do try to avoid using these on their own.
- */
- static inline void __thread_fpu_end(struct task_struct *tsk)
- {
- __thread_clear_has_fpu(tsk);
- stts();
- }
- static inline void __thread_fpu_begin(struct task_struct *tsk)
- {
- clts();
- __thread_set_has_fpu(tsk);
- }
- /*
- * FPU state switching for scheduling.
- *
- * This is a two-stage process:
- *
- * - switch_fpu_prepare() saves the old state and
- * sets the new state of the CR0.TS bit. This is
- * done within the context of the old process.
- *
- * - switch_fpu_finish() restores the new state as
- * necessary.
- */
- typedef struct { int preload; } fpu_switch_t;
- /*
- * FIXME! We could do a totally lazy restore, but we need to
- * add a per-cpu "this was the task that last touched the FPU
- * on this CPU" variable, and the task needs to have a "I last
- * touched the FPU on this CPU" and check them.
- *
- * We don't do that yet, so "fpu_lazy_restore()" always returns
- * false, but some day..
- */
- #define fpu_lazy_restore(tsk) (0)
- #define fpu_lazy_state_intact(tsk) do { } while (0)
- static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new)
- {
- fpu_switch_t fpu;
- fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
- if (__thread_has_fpu(old)) {
- if (__save_init_fpu(old))
- fpu_lazy_state_intact(old);
- __thread_clear_has_fpu(old);
- old->fpu_counter++;
- /* Don't change CR0.TS if we just switch! */
- if (fpu.preload) {
- __thread_set_has_fpu(new);
- prefetch(new->thread.fpu.state);
- } else
- stts();
- } else {
- old->fpu_counter = 0;
- if (fpu.preload) {
- if (fpu_lazy_restore(new))
- fpu.preload = 0;
- else
- prefetch(new->thread.fpu.state);
- __thread_fpu_begin(new);
- }
- }
- return fpu;
- }
- /*
- * By the time this gets called, we've already cleared CR0.TS and
- * given the process the FPU if we are going to preload the FPU
- * state - all we need to do is to conditionally restore the register
- * state itself.
- */
- static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
- {
- if (fpu.preload)
- __math_state_restore(new);
- }
- /*
- * Signal frame handlers...
- */
- extern int save_i387_xstate(void __user *buf);
- extern int restore_i387_xstate(void __user *buf);
- static inline void __clear_fpu(struct task_struct *tsk)
- {
- if (__thread_has_fpu(tsk)) {
- /* Ignore delayed exceptions from user space */
- asm volatile("1: fwait\n"
- "2:\n"
- _ASM_EXTABLE(1b, 2b));
- __thread_fpu_end(tsk);
- }
- }
- /*
- * Were we in an interrupt that interrupted kernel mode?
- *
- * We can do a kernel_fpu_begin/end() pair *ONLY* if that
- * pair does nothing at all: the thread must not have fpu (so
- * that we don't try to save the FPU state), and TS must
- * be set (so that the clts/stts pair does nothing that is
- * visible in the interrupted kernel thread).
- */
- static inline bool interrupted_kernel_fpu_idle(void)
- {
- return !__thread_has_fpu(current) &&
- (read_cr0() & X86_CR0_TS);
- }
- /*
- * Were we in user mode (or vm86 mode) when we were
- * interrupted?
- *
- * Doing kernel_fpu_begin/end() is ok if we are running
- * in an interrupt context from user mode - we'll just
- * save the FPU state as required.
- */
- static inline bool interrupted_user_mode(void)
- {
- struct pt_regs *regs = get_irq_regs();
- return regs && user_mode_vm(regs);
- }
- /*
- * Can we use the FPU in kernel mode with the
- * whole "kernel_fpu_begin/end()" sequence?
- *
- * It's always ok in process context (ie "not interrupt")
- * but it is sometimes ok even from an irq.
- */
- static inline bool irq_fpu_usable(void)
- {
- return !in_interrupt() ||
- interrupted_user_mode() ||
- interrupted_kernel_fpu_idle();
- }
- static inline void kernel_fpu_begin(void)
- {
- struct task_struct *me = current;
- WARN_ON_ONCE(!irq_fpu_usable());
- preempt_disable();
- if (__thread_has_fpu(me)) {
- __save_init_fpu(me);
- __thread_clear_has_fpu(me);
- /* We do 'stts()' in kernel_fpu_end() */
- } else
- clts();
- }
- static inline void kernel_fpu_end(void)
- {
- stts();
- preempt_enable();
- }
- /*
- * Some instructions like VIA's padlock instructions generate a spurious
- * DNA fault but don't modify SSE registers. And these instructions
- * get used from interrupt context as well. To prevent these kernel instructions
- * in interrupt context interacting wrongly with other user/kernel fpu usage, we
- * should use them only in the context of irq_ts_save/restore()
- */
- static inline int irq_ts_save(void)
- {
- /*
- * If in process context and not atomic, we can take a spurious DNA fault.
- * Otherwise, doing clts() in process context requires disabling preemption
- * or some heavy lifting like kernel_fpu_begin()
- */
- if (!in_atomic())
- return 0;
- if (read_cr0() & X86_CR0_TS) {
- clts();
- return 1;
- }
- return 0;
- }
- static inline void irq_ts_restore(int TS_state)
- {
- if (TS_state)
- stts();
- }
- /*
- * The question "does this thread have fpu access?"
- * is slightly racy, since preemption could come in
- * and revoke it immediately after the test.
- *
- * However, even in that very unlikely scenario,
- * we can just assume we have FPU access - typically
- * to save the FP state - we'll just take a #NM
- * fault and get the FPU access back.
- *
- * The actual user_fpu_begin/end() functions
- * need to be preemption-safe, though.
- *
- * NOTE! user_fpu_end() must be used only after you
- * have saved the FP state, and user_fpu_begin() must
- * be used only immediately before restoring it.
- * These functions do not do any save/restore on
- * their own.
- */
- static inline int user_has_fpu(void)
- {
- return __thread_has_fpu(current);
- }
- static inline void user_fpu_end(void)
- {
- preempt_disable();
- __thread_fpu_end(current);
- preempt_enable();
- }
- static inline void user_fpu_begin(void)
- {
- preempt_disable();
- if (!user_has_fpu())
- __thread_fpu_begin(current);
- preempt_enable();
- }
- /*
- * These disable preemption on their own and are safe
- */
- static inline void save_init_fpu(struct task_struct *tsk)
- {
- WARN_ON_ONCE(!__thread_has_fpu(tsk));
- preempt_disable();
- __save_init_fpu(tsk);
- __thread_fpu_end(tsk);
- preempt_enable();
- }
- static inline void unlazy_fpu(struct task_struct *tsk)
- {
- preempt_disable();
- if (__thread_has_fpu(tsk)) {
- __save_init_fpu(tsk);
- __thread_fpu_end(tsk);
- } else
- tsk->fpu_counter = 0;
- preempt_enable();
- }
- static inline void clear_fpu(struct task_struct *tsk)
- {
- preempt_disable();
- __clear_fpu(tsk);
- preempt_enable();
- }
- /*
- * i387 state interaction
- */
- static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
- {
- if (cpu_has_fxsr) {
- return tsk->thread.fpu.state->fxsave.cwd;
- } else {
- return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
- }
- }
- static inline unsigned short get_fpu_swd(struct task_struct *tsk)
- {
- if (cpu_has_fxsr) {
- return tsk->thread.fpu.state->fxsave.swd;
- } else {
- return (unsigned short)tsk->thread.fpu.state->fsave.swd;
- }
- }
- static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
- {
- if (cpu_has_xmm) {
- return tsk->thread.fpu.state->fxsave.mxcsr;
- } else {
- return MXCSR_DEFAULT;
- }
- }
- static bool fpu_allocated(struct fpu *fpu)
- {
- return fpu->state != NULL;
- }
- static inline int fpu_alloc(struct fpu *fpu)
- {
- if (fpu_allocated(fpu))
- return 0;
- fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
- if (!fpu->state)
- return -ENOMEM;
- WARN_ON((unsigned long)fpu->state & 15);
- return 0;
- }
- static inline void fpu_free(struct fpu *fpu)
- {
- if (fpu->state) {
- kmem_cache_free(task_xstate_cachep, fpu->state);
- fpu->state = NULL;
- }
- }
- static inline void fpu_copy(struct fpu *dst, struct fpu *src)
- {
- memcpy(dst->state, src->state, xstate_size);
- }
- extern void fpu_finit(struct fpu *fpu);
- #endif /* __ASSEMBLY__ */
- #endif /* _ASM_X86_I387_H */