/arch/um/include/asm/pgtable.h

https://bitbucket.org/ndreys/linux-sunxi · C++ Header · 375 lines · 229 code · 67 blank · 79 comment · 10 complexity · ce1570ad8e3e1fbe487941d2ee087ff4 MD5 · raw file

  1. /*
  2. * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Derived from include/asm-i386/pgtable.h
  5. * Licensed under the GPL
  6. */
  7. #ifndef __UM_PGTABLE_H
  8. #define __UM_PGTABLE_H
  9. #include <asm/fixmap.h>
  10. #define _PAGE_PRESENT 0x001
  11. #define _PAGE_NEWPAGE 0x002
  12. #define _PAGE_NEWPROT 0x004
  13. #define _PAGE_RW 0x020
  14. #define _PAGE_USER 0x040
  15. #define _PAGE_ACCESSED 0x080
  16. #define _PAGE_DIRTY 0x100
  17. /* If _PAGE_PRESENT is clear, we use these: */
  18. #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
  19. #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
  20. pte_present gives true */
  21. #ifdef CONFIG_3_LEVEL_PGTABLES
  22. #include "asm/pgtable-3level.h"
  23. #else
  24. #include "asm/pgtable-2level.h"
  25. #endif
  26. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  27. /* zero page used for uninitialized stuff */
  28. extern unsigned long *empty_zero_page;
  29. #define pgtable_cache_init() do ; while (0)
  30. /* Just any arbitrary offset to the start of the vmalloc VM area: the
  31. * current 8MB value just means that there will be a 8MB "hole" after the
  32. * physical memory until the kernel virtual memory starts. That means that
  33. * any out-of-bounds memory accesses will hopefully be caught.
  34. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  35. * area for the same reason. ;)
  36. */
  37. extern unsigned long end_iomem;
  38. #define VMALLOC_OFFSET (__va_space)
  39. #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  40. #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
  41. #ifdef CONFIG_HIGHMEM
  42. # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
  43. #else
  44. # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
  45. #endif
  46. #define MODULES_VADDR VMALLOC_START
  47. #define MODULES_END VMALLOC_END
  48. #define MODULES_LEN (MODULES_VADDR - MODULES_END)
  49. #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
  50. #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
  51. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  52. #define __PAGE_KERNEL_EXEC \
  53. (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  54. #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
  55. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
  56. #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  57. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  58. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  59. #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
  60. /*
  61. * The i386 can't do page protection for execute, and considers that the same
  62. * are read.
  63. * Also, write permissions imply read permissions. This is the closest we can
  64. * get..
  65. */
  66. #define __P000 PAGE_NONE
  67. #define __P001 PAGE_READONLY
  68. #define __P010 PAGE_COPY
  69. #define __P011 PAGE_COPY
  70. #define __P100 PAGE_READONLY
  71. #define __P101 PAGE_READONLY
  72. #define __P110 PAGE_COPY
  73. #define __P111 PAGE_COPY
  74. #define __S000 PAGE_NONE
  75. #define __S001 PAGE_READONLY
  76. #define __S010 PAGE_SHARED
  77. #define __S011 PAGE_SHARED
  78. #define __S100 PAGE_READONLY
  79. #define __S101 PAGE_READONLY
  80. #define __S110 PAGE_SHARED
  81. #define __S111 PAGE_SHARED
  82. /*
  83. * ZERO_PAGE is a global shared page that is always zero: used
  84. * for zero-mapped memory areas etc..
  85. */
  86. #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
  87. #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
  88. #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
  89. #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
  90. #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
  91. #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
  92. #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
  93. #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
  94. #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
  95. #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
  96. #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
  97. #define pte_page(x) pfn_to_page(pte_pfn(x))
  98. #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
  99. /*
  100. * =================================
  101. * Flags checking section.
  102. * =================================
  103. */
  104. static inline int pte_none(pte_t pte)
  105. {
  106. return pte_is_zero(pte);
  107. }
  108. /*
  109. * The following only work if pte_present() is true.
  110. * Undefined behaviour if not..
  111. */
  112. static inline int pte_read(pte_t pte)
  113. {
  114. return((pte_get_bits(pte, _PAGE_USER)) &&
  115. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  116. }
  117. static inline int pte_exec(pte_t pte){
  118. return((pte_get_bits(pte, _PAGE_USER)) &&
  119. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  120. }
  121. static inline int pte_write(pte_t pte)
  122. {
  123. return((pte_get_bits(pte, _PAGE_RW)) &&
  124. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  125. }
  126. /*
  127. * The following only works if pte_present() is not true.
  128. */
  129. static inline int pte_file(pte_t pte)
  130. {
  131. return pte_get_bits(pte, _PAGE_FILE);
  132. }
  133. static inline int pte_dirty(pte_t pte)
  134. {
  135. return pte_get_bits(pte, _PAGE_DIRTY);
  136. }
  137. static inline int pte_young(pte_t pte)
  138. {
  139. return pte_get_bits(pte, _PAGE_ACCESSED);
  140. }
  141. static inline int pte_newpage(pte_t pte)
  142. {
  143. return pte_get_bits(pte, _PAGE_NEWPAGE);
  144. }
  145. static inline int pte_newprot(pte_t pte)
  146. {
  147. return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
  148. }
  149. static inline int pte_special(pte_t pte)
  150. {
  151. return 0;
  152. }
  153. /*
  154. * =================================
  155. * Flags setting section.
  156. * =================================
  157. */
  158. static inline pte_t pte_mknewprot(pte_t pte)
  159. {
  160. pte_set_bits(pte, _PAGE_NEWPROT);
  161. return(pte);
  162. }
  163. static inline pte_t pte_mkclean(pte_t pte)
  164. {
  165. pte_clear_bits(pte, _PAGE_DIRTY);
  166. return(pte);
  167. }
  168. static inline pte_t pte_mkold(pte_t pte)
  169. {
  170. pte_clear_bits(pte, _PAGE_ACCESSED);
  171. return(pte);
  172. }
  173. static inline pte_t pte_wrprotect(pte_t pte)
  174. {
  175. pte_clear_bits(pte, _PAGE_RW);
  176. return(pte_mknewprot(pte));
  177. }
  178. static inline pte_t pte_mkread(pte_t pte)
  179. {
  180. pte_set_bits(pte, _PAGE_USER);
  181. return(pte_mknewprot(pte));
  182. }
  183. static inline pte_t pte_mkdirty(pte_t pte)
  184. {
  185. pte_set_bits(pte, _PAGE_DIRTY);
  186. return(pte);
  187. }
  188. static inline pte_t pte_mkyoung(pte_t pte)
  189. {
  190. pte_set_bits(pte, _PAGE_ACCESSED);
  191. return(pte);
  192. }
  193. static inline pte_t pte_mkwrite(pte_t pte)
  194. {
  195. pte_set_bits(pte, _PAGE_RW);
  196. return(pte_mknewprot(pte));
  197. }
  198. static inline pte_t pte_mkuptodate(pte_t pte)
  199. {
  200. pte_clear_bits(pte, _PAGE_NEWPAGE);
  201. if(pte_present(pte))
  202. pte_clear_bits(pte, _PAGE_NEWPROT);
  203. return(pte);
  204. }
  205. static inline pte_t pte_mknewpage(pte_t pte)
  206. {
  207. pte_set_bits(pte, _PAGE_NEWPAGE);
  208. return(pte);
  209. }
  210. static inline pte_t pte_mkspecial(pte_t pte)
  211. {
  212. return(pte);
  213. }
  214. static inline void set_pte(pte_t *pteptr, pte_t pteval)
  215. {
  216. pte_copy(*pteptr, pteval);
  217. /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
  218. * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
  219. * mapped pages.
  220. */
  221. *pteptr = pte_mknewpage(*pteptr);
  222. if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
  223. }
  224. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  225. #define __HAVE_ARCH_PTE_SAME
  226. static inline int pte_same(pte_t pte_a, pte_t pte_b)
  227. {
  228. return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
  229. }
  230. /*
  231. * Conversion functions: convert a page and protection to a page entry,
  232. * and a page entry and page directory to the page they refer to.
  233. */
  234. #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
  235. #define __virt_to_page(virt) phys_to_page(__pa(virt))
  236. #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
  237. #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
  238. #define mk_pte(page, pgprot) \
  239. ({ pte_t pte; \
  240. \
  241. pte_set_val(pte, page_to_phys(page), (pgprot)); \
  242. if (pte_present(pte)) \
  243. pte_mknewprot(pte_mknewpage(pte)); \
  244. pte;})
  245. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  246. {
  247. pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
  248. return pte;
  249. }
  250. /*
  251. * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
  252. *
  253. * this macro returns the index of the entry in the pgd page which would
  254. * control the given virtual address
  255. */
  256. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  257. /*
  258. * pgd_offset() returns a (pgd_t *)
  259. * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
  260. */
  261. #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
  262. /*
  263. * a shortcut which implies the use of the kernel's pgd, instead
  264. * of a process's
  265. */
  266. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  267. /*
  268. * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
  269. *
  270. * this macro returns the index of the entry in the pmd page which would
  271. * control the given virtual address
  272. */
  273. #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  274. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  275. #define pmd_page_vaddr(pmd) \
  276. ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  277. /*
  278. * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
  279. *
  280. * this macro returns the index of the entry in the pte page which would
  281. * control the given virtual address
  282. */
  283. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  284. #define pte_offset_kernel(dir, address) \
  285. ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
  286. #define pte_offset_map(dir, address) \
  287. ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
  288. #define pte_unmap(pte) do { } while (0)
  289. struct mm_struct;
  290. extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
  291. #define update_mmu_cache(vma,address,ptep) do ; while (0)
  292. /* Encode and de-code a swap entry */
  293. #define __swp_type(x) (((x).val >> 5) & 0x1f)
  294. #define __swp_offset(x) ((x).val >> 11)
  295. #define __swp_entry(type, offset) \
  296. ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
  297. #define __pte_to_swp_entry(pte) \
  298. ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
  299. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  300. #define kern_addr_valid(addr) (1)
  301. #include <asm-generic/pgtable.h>
  302. /* Clear a kernel PTE and flush it from the TLB */
  303. #define kpte_clear_flush(ptep, vaddr) \
  304. do { \
  305. pte_clear(&init_mm, (vaddr), (ptep)); \
  306. __flush_tlb_one((vaddr)); \
  307. } while (0)
  308. #endif