PageRenderTime 49ms CodeModel.GetById 23ms RepoModel.GetById 0ms app.codeStats 0ms

/src/opencl/sha256_kernel.cl

https://bitbucket.org/lcirvin/cse465-project
OpenCL | 257 lines | 231 code | 26 blank | 0 comment | 0 complexity | ea16d606af88d2da8150d0ab55df85df MD5 | raw file
Possible License(s): BSD-3-Clause
  1. /*
  2. * Modified in May of 2012 by Dhiru Kholia for JtR.
  3. *
  4. * FIPS-180-2 compliant SHA-256 implementation
  5. *
  6. * Copyright (C) 2001-2003 Christophe Devine
  7. *
  8. * sha256.c - Implementation of the Secure Hash Algorithm-256 (SHA-256).
  9. * Copyright (C) 2002 Southern Storm Software, Pty Ltd.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  24. */
  25. #ifndef uint8
  26. #define uint8 unsigned char
  27. #endif
  28. #ifndef uint32
  29. #define uint32 unsigned long int
  30. #endif
  31. typedef struct {
  32. uint32 state[8];
  33. } sha256_context;
  34. #define GET_UINT32(n,b,i) \
  35. { \
  36. (n) = ( (uint32) (b)[(i) ] << 24 ) \
  37. | ( (uint32) (b)[(i) + 1] << 16 ) \
  38. | ( (uint32) (b)[(i) + 2] << 8 ) \
  39. | ( (uint32) (b)[(i) + 3] ); \
  40. }
  41. #define PUT_UINT32(n,b,i) \
  42. { \
  43. (b)[(i) ] = (uint8) ( (n) >> 24 ); \
  44. (b)[(i) + 1] = (uint8) ( (n) >> 16 ); \
  45. (b)[(i) + 2] = (uint8) ( (n) >> 8 ); \
  46. (b)[(i) + 3] = (uint8) ( (n) ); \
  47. }
  48. inline void sha256_starts(sha256_context * ctx)
  49. {
  50. ctx->state[0] = 0x6A09E667;
  51. ctx->state[1] = 0xBB67AE85;
  52. ctx->state[2] = 0x3C6EF372;
  53. ctx->state[3] = 0xA54FF53A;
  54. ctx->state[4] = 0x510E527F;
  55. ctx->state[5] = 0x9B05688C;
  56. ctx->state[6] = 0x1F83D9AB;
  57. ctx->state[7] = 0x5BE0CD19;
  58. }
  59. inline void sha256_process(sha256_context * ctx, uint8 data[64])
  60. {
  61. uint32 temp1, temp2, W[64];
  62. uint32 A, B, C, D, E, F, G, H;
  63. GET_UINT32(W[0], data, 0);
  64. GET_UINT32(W[1], data, 4);
  65. GET_UINT32(W[2], data, 8);
  66. GET_UINT32(W[3], data, 12);
  67. GET_UINT32(W[4], data, 16);
  68. GET_UINT32(W[5], data, 20);
  69. GET_UINT32(W[6], data, 24);
  70. GET_UINT32(W[7], data, 28);
  71. GET_UINT32(W[8], data, 32);
  72. GET_UINT32(W[9], data, 36);
  73. GET_UINT32(W[10], data, 40);
  74. GET_UINT32(W[11], data, 44);
  75. GET_UINT32(W[12], data, 48);
  76. GET_UINT32(W[13], data, 52);
  77. GET_UINT32(W[14], data, 56);
  78. GET_UINT32(W[15], data, 60);
  79. #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
  80. #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
  81. #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
  82. #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
  83. #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
  84. #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
  85. #define F0(x,y,z) ((x & y) | (z & (x | y)))
  86. #define F1(x,y,z) (z ^ (x & (y ^ z)))
  87. #define R(t) \
  88. ( \
  89. W[t] = S1(W[t - 2]) + W[t - 7] + \
  90. S0(W[t - 15]) + W[t - 16] \
  91. )
  92. #define P(a,b,c,d,e,f,g,h,x,K) \
  93. { \
  94. temp1 = h + S3(e) + F1(e,f,g) + K + x; \
  95. temp2 = S2(a) + F0(a,b,c); \
  96. d += temp1; h = temp1 + temp2; \
  97. }
  98. A = ctx->state[0];
  99. B = ctx->state[1];
  100. C = ctx->state[2];
  101. D = ctx->state[3];
  102. E = ctx->state[4];
  103. F = ctx->state[5];
  104. G = ctx->state[6];
  105. H = ctx->state[7];
  106. P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
  107. P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
  108. P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
  109. P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
  110. P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
  111. P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
  112. P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
  113. P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
  114. P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
  115. P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
  116. P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
  117. P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
  118. P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
  119. P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
  120. P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
  121. P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
  122. P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
  123. P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
  124. P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
  125. P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
  126. P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
  127. P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
  128. P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
  129. P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
  130. P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
  131. P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
  132. P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
  133. P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
  134. P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
  135. P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
  136. P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
  137. P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
  138. P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
  139. P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
  140. P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
  141. P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
  142. P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
  143. P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
  144. P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
  145. P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
  146. P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
  147. P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
  148. P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
  149. P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
  150. P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
  151. P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
  152. P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
  153. P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
  154. P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
  155. P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
  156. P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
  157. P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
  158. P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
  159. P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
  160. P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
  161. P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
  162. P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
  163. P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
  164. P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
  165. P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
  166. P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
  167. P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
  168. P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
  169. P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
  170. ctx->state[0] += A;
  171. ctx->state[1] += B;
  172. ctx->state[2] += C;
  173. ctx->state[3] += D;
  174. ctx->state[4] += E;
  175. ctx->state[5] += F;
  176. ctx->state[6] += G;
  177. ctx->state[7] += H;
  178. }
  179. /* Write a 32-bit big-endian long value to a buffer. */
  180. inline void WriteLong(unsigned char *buf, int value)
  181. {
  182. buf[0] = (unsigned char)(value >> 24);
  183. buf[1] = (unsigned char)(value >> 16);
  184. buf[2] = (unsigned char)(value >> 8);
  185. buf[3] = (unsigned char)value;
  186. }
  187. inline void sha256_update(sha256_context * ctx, uint8 * input)
  188. {
  189. int i;
  190. unsigned char buffer[64] = { 0 };
  191. for(i = 0; input[i]; i++)
  192. buffer[i] = input[i];
  193. char *p = (char *) buffer;
  194. for (i = 0; i != 64 && p[i]; i++);
  195. p[i] = 0x80;
  196. unsigned long tbl = i << 3;
  197. WriteLong(buffer + 56, (unsigned int)(tbl >> 32));
  198. WriteLong(buffer + 60, (unsigned int)tbl);
  199. sha256_process(ctx, buffer);
  200. }
  201. __kernel void sha256(__global uint * data_info, __global const uint * keys,
  202. __global uint * hashes)
  203. {
  204. int id = get_global_id(0);
  205. uint key[16] = { 0 };
  206. int i;
  207. uint num_keys = data_info[1];
  208. uint KEY_LENGTH = data_info[0] + 1;
  209. int base = id * (KEY_LENGTH / 4);
  210. for (i = 0; i != (KEY_LENGTH / 4) && keys[base + i]; i++)
  211. key[i] = keys[base + i];
  212. sha256_context ctx;
  213. sha256_starts(&ctx);
  214. sha256_update(&ctx, (uint8 *) key);
  215. /* hashes[id] = ctx.state[0];
  216. hashes[1 * num_keys + id] = ctx.state[1];
  217. hashes[2 * num_keys + id] = ctx.state[2];
  218. hashes[3 * num_keys + id] = ctx.state[3];
  219. hashes[4 * num_keys + id] = ctx.state[4];
  220. hashes[5 * num_keys + id] = ctx.state[5];
  221. hashes[6 * num_keys + id] = ctx.state[6];
  222. hashes[7 * num_keys + id] = ctx.state[7]; */
  223. hashes[id * num_keys + 0] = ctx.state[0];
  224. hashes[id * num_keys + 1] = ctx.state[1];
  225. hashes[id * num_keys + 2] = ctx.state[2];
  226. hashes[id * num_keys + 3] = ctx.state[3];
  227. hashes[id * num_keys + 4] = ctx.state[4];
  228. hashes[id * num_keys + 5] = ctx.state[5];
  229. hashes[id * num_keys + 6] = ctx.state[6];
  230. hashes[id * num_keys + 7] = ctx.state[7];
  231. }