PageRenderTime 59ms CodeModel.GetById 28ms RepoModel.GetById 0ms app.codeStats 0ms

/drivers/base/power/main.c

https://bitbucket.org/voltagex/android-kernel-u8666
C | 1210 lines | 842 code | 156 blank | 212 comment | 147 complexity | 4ea2c50071bf63b9e1a827183ddd181c MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * drivers/base/power/main.c - Where the driver meets power management.
  3. *
  4. * Copyright (c) 2003 Patrick Mochel
  5. * Copyright (c) 2003 Open Source Development Lab
  6. *
  7. * This file is released under the GPLv2
  8. *
  9. *
  10. * The driver model core calls device_pm_add() when a device is registered.
  11. * This will initialize the embedded device_pm_info object in the device
  12. * and add it to the list of power-controlled devices. sysfs entries for
  13. * controlling device power management will also be added.
  14. *
  15. * A separate list is used for keeping track of power info, because the power
  16. * domain dependencies may differ from the ancestral dependencies that the
  17. * subsystem list maintains.
  18. */
  19. #include <linux/device.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/mutex.h>
  22. #include <linux/pm.h>
  23. #include <linux/pm_runtime.h>
  24. #include <linux/resume-trace.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/sched.h>
  27. #include <linux/async.h>
  28. #include <linux/suspend.h>
  29. #include <linux/timer.h>
  30. #include "../base.h"
  31. #include "power.h"
  32. /*
  33. * The entries in the dpm_list list are in a depth first order, simply
  34. * because children are guaranteed to be discovered after parents, and
  35. * are inserted at the back of the list on discovery.
  36. *
  37. * Since device_pm_add() may be called with a device lock held,
  38. * we must never try to acquire a device lock while holding
  39. * dpm_list_mutex.
  40. */
  41. LIST_HEAD(dpm_list);
  42. LIST_HEAD(dpm_prepared_list);
  43. LIST_HEAD(dpm_suspended_list);
  44. LIST_HEAD(dpm_noirq_list);
  45. static DEFINE_MUTEX(dpm_list_mtx);
  46. static pm_message_t pm_transition;
  47. static void dpm_drv_timeout(unsigned long data);
  48. struct dpm_drv_wd_data {
  49. struct device *dev;
  50. struct task_struct *tsk;
  51. };
  52. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  53. void print_dpm_list(void)
  54. {
  55. int i=0;
  56. struct device *dev;
  57. mutex_lock(&dpm_list_mtx);
  58. printk("HW debug ");
  59. list_for_each_entry(dev, &dpm_list, power.entry){
  60. printk("%s,",dev_name(dev));
  61. if(++i%20 == 0){
  62. printk("\n");
  63. }
  64. }
  65. mutex_unlock(&dpm_list_mtx);
  66. return;
  67. }
  68. EXPORT_SYMBOL_GPL(print_dpm_list);
  69. #endif
  70. static int async_error;
  71. /**
  72. * device_pm_init - Initialize the PM-related part of a device object.
  73. * @dev: Device object being initialized.
  74. */
  75. void device_pm_init(struct device *dev)
  76. {
  77. dev->power.is_prepared = false;
  78. dev->power.is_suspended = false;
  79. init_completion(&dev->power.completion);
  80. complete_all(&dev->power.completion);
  81. dev->power.wakeup = NULL;
  82. spin_lock_init(&dev->power.lock);
  83. pm_runtime_init(dev);
  84. INIT_LIST_HEAD(&dev->power.entry);
  85. }
  86. /**
  87. * device_pm_lock - Lock the list of active devices used by the PM core.
  88. */
  89. void device_pm_lock(void)
  90. {
  91. mutex_lock(&dpm_list_mtx);
  92. }
  93. /**
  94. * device_pm_unlock - Unlock the list of active devices used by the PM core.
  95. */
  96. void device_pm_unlock(void)
  97. {
  98. mutex_unlock(&dpm_list_mtx);
  99. }
  100. /**
  101. * device_pm_add - Add a device to the PM core's list of active devices.
  102. * @dev: Device to add to the list.
  103. */
  104. void device_pm_add(struct device *dev)
  105. {
  106. pr_debug("PM: Adding info for %s:%s\n",
  107. dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
  108. mutex_lock(&dpm_list_mtx);
  109. if (dev->parent && dev->parent->power.is_prepared)
  110. dev_warn(dev, "parent %s should not be sleeping\n",
  111. dev_name(dev->parent));
  112. list_add_tail(&dev->power.entry, &dpm_list);
  113. mutex_unlock(&dpm_list_mtx);
  114. }
  115. /**
  116. * device_pm_remove - Remove a device from the PM core's list of active devices.
  117. * @dev: Device to be removed from the list.
  118. */
  119. void device_pm_remove(struct device *dev)
  120. {
  121. pr_debug("PM: Removing info for %s:%s\n",
  122. dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
  123. complete_all(&dev->power.completion);
  124. mutex_lock(&dpm_list_mtx);
  125. list_del_init(&dev->power.entry);
  126. mutex_unlock(&dpm_list_mtx);
  127. device_wakeup_disable(dev);
  128. pm_runtime_remove(dev);
  129. }
  130. /**
  131. * device_pm_move_before - Move device in the PM core's list of active devices.
  132. * @deva: Device to move in dpm_list.
  133. * @devb: Device @deva should come before.
  134. */
  135. void device_pm_move_before(struct device *deva, struct device *devb)
  136. {
  137. pr_debug("PM: Moving %s:%s before %s:%s\n",
  138. deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
  139. devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
  140. /* Delete deva from dpm_list and reinsert before devb. */
  141. list_move_tail(&deva->power.entry, &devb->power.entry);
  142. }
  143. /**
  144. * device_pm_move_after - Move device in the PM core's list of active devices.
  145. * @deva: Device to move in dpm_list.
  146. * @devb: Device @deva should come after.
  147. */
  148. void device_pm_move_after(struct device *deva, struct device *devb)
  149. {
  150. pr_debug("PM: Moving %s:%s after %s:%s\n",
  151. deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
  152. devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
  153. /* Delete deva from dpm_list and reinsert after devb. */
  154. list_move(&deva->power.entry, &devb->power.entry);
  155. }
  156. /**
  157. * device_pm_move_last - Move device to end of the PM core's list of devices.
  158. * @dev: Device to move in dpm_list.
  159. */
  160. void device_pm_move_last(struct device *dev)
  161. {
  162. pr_debug("PM: Moving %s:%s to end of list\n",
  163. dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
  164. list_move_tail(&dev->power.entry, &dpm_list);
  165. }
  166. static ktime_t initcall_debug_start(struct device *dev)
  167. {
  168. ktime_t calltime = ktime_set(0, 0);
  169. if (initcall_debug) {
  170. pr_info("calling %s+ @ %i\n",
  171. dev_name(dev), task_pid_nr(current));
  172. calltime = ktime_get();
  173. }
  174. return calltime;
  175. }
  176. static void initcall_debug_report(struct device *dev, ktime_t calltime,
  177. int error)
  178. {
  179. ktime_t delta, rettime;
  180. if (initcall_debug) {
  181. rettime = ktime_get();
  182. delta = ktime_sub(rettime, calltime);
  183. pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
  184. error, (unsigned long long)ktime_to_ns(delta) >> 10);
  185. }
  186. }
  187. /**
  188. * dpm_wait - Wait for a PM operation to complete.
  189. * @dev: Device to wait for.
  190. * @async: If unset, wait only if the device's power.async_suspend flag is set.
  191. */
  192. static void dpm_wait(struct device *dev, bool async)
  193. {
  194. if (!dev)
  195. return;
  196. if (async || (pm_async_enabled && dev->power.async_suspend))
  197. wait_for_completion(&dev->power.completion);
  198. }
  199. static int dpm_wait_fn(struct device *dev, void *async_ptr)
  200. {
  201. dpm_wait(dev, *((bool *)async_ptr));
  202. return 0;
  203. }
  204. static void dpm_wait_for_children(struct device *dev, bool async)
  205. {
  206. device_for_each_child(dev, &async, dpm_wait_fn);
  207. }
  208. /**
  209. * pm_op - Execute the PM operation appropriate for given PM event.
  210. * @dev: Device to handle.
  211. * @ops: PM operations to choose from.
  212. * @state: PM transition of the system being carried out.
  213. */
  214. static int pm_op(struct device *dev,
  215. const struct dev_pm_ops *ops,
  216. pm_message_t state)
  217. {
  218. int error = 0;
  219. ktime_t calltime;
  220. calltime = initcall_debug_start(dev);
  221. switch (state.event) {
  222. #ifdef CONFIG_SUSPEND
  223. case PM_EVENT_SUSPEND:
  224. if (ops->suspend) {
  225. error = ops->suspend(dev);
  226. suspend_report_result(ops->suspend, error);
  227. }
  228. break;
  229. case PM_EVENT_RESUME:
  230. if (ops->resume) {
  231. error = ops->resume(dev);
  232. suspend_report_result(ops->resume, error);
  233. }
  234. break;
  235. #endif /* CONFIG_SUSPEND */
  236. #ifdef CONFIG_HIBERNATE_CALLBACKS
  237. case PM_EVENT_FREEZE:
  238. case PM_EVENT_QUIESCE:
  239. if (ops->freeze) {
  240. error = ops->freeze(dev);
  241. suspend_report_result(ops->freeze, error);
  242. }
  243. break;
  244. case PM_EVENT_HIBERNATE:
  245. if (ops->poweroff) {
  246. error = ops->poweroff(dev);
  247. suspend_report_result(ops->poweroff, error);
  248. }
  249. break;
  250. case PM_EVENT_THAW:
  251. case PM_EVENT_RECOVER:
  252. if (ops->thaw) {
  253. error = ops->thaw(dev);
  254. suspend_report_result(ops->thaw, error);
  255. }
  256. break;
  257. case PM_EVENT_RESTORE:
  258. if (ops->restore) {
  259. error = ops->restore(dev);
  260. suspend_report_result(ops->restore, error);
  261. }
  262. break;
  263. #endif /* CONFIG_HIBERNATE_CALLBACKS */
  264. default:
  265. error = -EINVAL;
  266. }
  267. initcall_debug_report(dev, calltime, error);
  268. return error;
  269. }
  270. /**
  271. * pm_noirq_op - Execute the PM operation appropriate for given PM event.
  272. * @dev: Device to handle.
  273. * @ops: PM operations to choose from.
  274. * @state: PM transition of the system being carried out.
  275. *
  276. * The driver of @dev will not receive interrupts while this function is being
  277. * executed.
  278. */
  279. static int pm_noirq_op(struct device *dev,
  280. const struct dev_pm_ops *ops,
  281. pm_message_t state)
  282. {
  283. int error = 0;
  284. ktime_t calltime = ktime_set(0, 0), delta, rettime;
  285. if (initcall_debug) {
  286. pr_info("calling %s+ @ %i, parent: %s\n",
  287. dev_name(dev), task_pid_nr(current),
  288. dev->parent ? dev_name(dev->parent) : "none");
  289. calltime = ktime_get();
  290. }
  291. switch (state.event) {
  292. #ifdef CONFIG_SUSPEND
  293. case PM_EVENT_SUSPEND:
  294. if (ops->suspend_noirq) {
  295. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  296. printk("HUAWEI RPC DEBUG: action: suspend_noirq dev name=%s, func=0x%x\n", dev_name(dev), (unsigned int)ops->suspend_noirq);
  297. if(dev &&(dev->driver)&& (dev->driver->pm)&&(dev->driver->pm->suspend_noirq))
  298. {
  299. print_symbol("driver->pm->suspend_noirq: %x\n", (unsigned int)(dev->driver->pm->suspend_noirq));
  300. }
  301. #endif
  302. error = ops->suspend_noirq(dev);
  303. suspend_report_result(ops->suspend_noirq, error);
  304. }
  305. break;
  306. case PM_EVENT_RESUME:
  307. if (ops->resume_noirq) {
  308. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  309. printk("HUAWEI RPC DEBUG: action: resume_noirq dev name=%s, func=0x%x\n", dev_name(dev), (unsigned int)ops->resume_noirq);
  310. if(dev &&(dev->driver)&& (dev->driver->pm)&&(dev->driver->pm->resume_noirq))
  311. {
  312. print_symbol("driver->pm->resume_noirq %x\n", (unsigned int)(dev->driver->pm->resume_noirq));
  313. }
  314. #endif
  315. error = ops->resume_noirq(dev);
  316. suspend_report_result(ops->resume_noirq, error);
  317. }
  318. break;
  319. #endif /* CONFIG_SUSPEND */
  320. #ifdef CONFIG_HIBERNATE_CALLBACKS
  321. case PM_EVENT_FREEZE:
  322. case PM_EVENT_QUIESCE:
  323. if (ops->freeze_noirq) {
  324. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  325. printk("HUAWEI RPC DEBUG: action: freeze_noirqdev dev name=%s, func=0x%x\n", dev_name(dev), (unsigned int)ops->freeze_noirq);
  326. #endif
  327. error = ops->freeze_noirq(dev);
  328. suspend_report_result(ops->freeze_noirq, error);
  329. }
  330. break;
  331. case PM_EVENT_HIBERNATE:
  332. if (ops->poweroff_noirq) {
  333. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  334. printk("HUAWEI RPC DEBUG: action: poweroff_noirq dev name=%s, func=0x%x\n", dev_name(dev), (unsigned int)ops->poweroff_noirq);
  335. #endif
  336. error = ops->poweroff_noirq(dev);
  337. suspend_report_result(ops->poweroff_noirq, error);
  338. }
  339. break;
  340. case PM_EVENT_THAW:
  341. case PM_EVENT_RECOVER:
  342. if (ops->thaw_noirq) {
  343. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  344. printk("HUAWEI RPC DEBUG: action: thaw_noirq dev name=%s, func=0x%x\n", dev_name(dev), (unsigned int)ops->thaw_noirq);
  345. #endif
  346. error = ops->thaw_noirq(dev);
  347. suspend_report_result(ops->thaw_noirq, error);
  348. }
  349. break;
  350. case PM_EVENT_RESTORE:
  351. if (ops->restore_noirq) {
  352. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  353. printk("HUAWEI RPC DEBUG: action: restore_noirq dev name=%s, func=0x%x\n", dev_name(dev), (unsigned int)ops->restore_noirq);
  354. #endif
  355. error = ops->restore_noirq(dev);
  356. suspend_report_result(ops->restore_noirq, error);
  357. }
  358. break;
  359. #endif /* CONFIG_HIBERNATE_CALLBACKS */
  360. default:
  361. error = -EINVAL;
  362. }
  363. if (initcall_debug) {
  364. rettime = ktime_get();
  365. delta = ktime_sub(rettime, calltime);
  366. printk("initcall %s_i+ returned %d after %Ld usecs\n",
  367. dev_name(dev), error,
  368. (unsigned long long)ktime_to_ns(delta) >> 10);
  369. }
  370. return error;
  371. }
  372. static char *pm_verb(int event)
  373. {
  374. switch (event) {
  375. case PM_EVENT_SUSPEND:
  376. return "suspend";
  377. case PM_EVENT_RESUME:
  378. return "resume";
  379. case PM_EVENT_FREEZE:
  380. return "freeze";
  381. case PM_EVENT_QUIESCE:
  382. return "quiesce";
  383. case PM_EVENT_HIBERNATE:
  384. return "hibernate";
  385. case PM_EVENT_THAW:
  386. return "thaw";
  387. case PM_EVENT_RESTORE:
  388. return "restore";
  389. case PM_EVENT_RECOVER:
  390. return "recover";
  391. default:
  392. return "(unknown PM event)";
  393. }
  394. }
  395. static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
  396. {
  397. dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
  398. ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
  399. ", may wakeup" : "");
  400. }
  401. static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
  402. int error)
  403. {
  404. printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
  405. dev_name(dev), pm_verb(state.event), info, error);
  406. }
  407. static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
  408. {
  409. ktime_t calltime;
  410. u64 usecs64;
  411. int usecs;
  412. calltime = ktime_get();
  413. usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
  414. do_div(usecs64, NSEC_PER_USEC);
  415. usecs = usecs64;
  416. if (usecs == 0)
  417. usecs = 1;
  418. pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
  419. info ?: "", info ? " " : "", pm_verb(state.event),
  420. usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
  421. }
  422. /*------------------------- Resume routines -------------------------*/
  423. /**
  424. * device_resume_noirq - Execute an "early resume" callback for given device.
  425. * @dev: Device to handle.
  426. * @state: PM transition of the system being carried out.
  427. *
  428. * The driver of @dev will not receive interrupts while this function is being
  429. * executed.
  430. */
  431. static int device_resume_noirq(struct device *dev, pm_message_t state)
  432. {
  433. int error = 0;
  434. TRACE_DEVICE(dev);
  435. TRACE_RESUME(0);
  436. if (dev->pwr_domain) {
  437. pm_dev_dbg(dev, state, "EARLY power domain ");
  438. error = pm_noirq_op(dev, &dev->pwr_domain->ops, state);
  439. } else if (dev->type && dev->type->pm) {
  440. pm_dev_dbg(dev, state, "EARLY type ");
  441. error = pm_noirq_op(dev, dev->type->pm, state);
  442. } else if (dev->class && dev->class->pm) {
  443. pm_dev_dbg(dev, state, "EARLY class ");
  444. error = pm_noirq_op(dev, dev->class->pm, state);
  445. } else if (dev->bus && dev->bus->pm) {
  446. pm_dev_dbg(dev, state, "EARLY ");
  447. error = pm_noirq_op(dev, dev->bus->pm, state);
  448. }
  449. TRACE_RESUME(error);
  450. return error;
  451. }
  452. /**
  453. * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices.
  454. * @state: PM transition of the system being carried out.
  455. *
  456. * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and
  457. * enable device drivers to receive interrupts.
  458. */
  459. void dpm_resume_noirq(pm_message_t state)
  460. {
  461. ktime_t starttime = ktime_get();
  462. mutex_lock(&dpm_list_mtx);
  463. while (!list_empty(&dpm_noirq_list)) {
  464. struct device *dev = to_device(dpm_noirq_list.next);
  465. int error;
  466. get_device(dev);
  467. list_move_tail(&dev->power.entry, &dpm_suspended_list);
  468. mutex_unlock(&dpm_list_mtx);
  469. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  470. printk(KERN_ERR "HUAWEI RPC DEBUG: resuming_noirq %s\n", dev_name(dev));
  471. #endif
  472. error = device_resume_noirq(dev, state);
  473. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  474. printk(KERN_ERR "HUAWEI RPC DEBUG: resumed_noirq %s error = %d\n", dev_name(dev), error);
  475. #endif
  476. if (error)
  477. pm_dev_err(dev, state, " early", error);
  478. mutex_lock(&dpm_list_mtx);
  479. put_device(dev);
  480. }
  481. mutex_unlock(&dpm_list_mtx);
  482. dpm_show_time(starttime, state, "early");
  483. resume_device_irqs();
  484. }
  485. EXPORT_SYMBOL_GPL(dpm_resume_noirq);
  486. /**
  487. * legacy_resume - Execute a legacy (bus or class) resume callback for device.
  488. * @dev: Device to resume.
  489. * @cb: Resume callback to execute.
  490. */
  491. static int legacy_resume(struct device *dev, int (*cb)(struct device *dev))
  492. {
  493. int error;
  494. ktime_t calltime;
  495. calltime = initcall_debug_start(dev);
  496. error = cb(dev);
  497. suspend_report_result(cb, error);
  498. initcall_debug_report(dev, calltime, error);
  499. return error;
  500. }
  501. /**
  502. * device_resume - Execute "resume" callbacks for given device.
  503. * @dev: Device to handle.
  504. * @state: PM transition of the system being carried out.
  505. * @async: If true, the device is being resumed asynchronously.
  506. */
  507. static int device_resume(struct device *dev, pm_message_t state, bool async)
  508. {
  509. int error = 0;
  510. TRACE_DEVICE(dev);
  511. TRACE_RESUME(0);
  512. dpm_wait(dev->parent, async);
  513. device_lock(dev);
  514. /*
  515. * This is a fib. But we'll allow new children to be added below
  516. * a resumed device, even if the device hasn't been completed yet.
  517. */
  518. dev->power.is_prepared = false;
  519. if (!dev->power.is_suspended)
  520. goto Unlock;
  521. if (dev->pwr_domain) {
  522. pm_dev_dbg(dev, state, "power domain ");
  523. error = pm_op(dev, &dev->pwr_domain->ops, state);
  524. goto End;
  525. }
  526. if (dev->type && dev->type->pm) {
  527. pm_dev_dbg(dev, state, "type ");
  528. error = pm_op(dev, dev->type->pm, state);
  529. goto End;
  530. }
  531. if (dev->class) {
  532. if (dev->class->pm) {
  533. pm_dev_dbg(dev, state, "class ");
  534. error = pm_op(dev, dev->class->pm, state);
  535. goto End;
  536. } else if (dev->class->resume) {
  537. pm_dev_dbg(dev, state, "legacy class ");
  538. error = legacy_resume(dev, dev->class->resume);
  539. goto End;
  540. }
  541. }
  542. if (dev->bus) {
  543. if (dev->bus->pm) {
  544. pm_dev_dbg(dev, state, "");
  545. error = pm_op(dev, dev->bus->pm, state);
  546. } else if (dev->bus->resume) {
  547. pm_dev_dbg(dev, state, "legacy ");
  548. error = legacy_resume(dev, dev->bus->resume);
  549. }
  550. }
  551. End:
  552. dev->power.is_suspended = false;
  553. Unlock:
  554. device_unlock(dev);
  555. complete_all(&dev->power.completion);
  556. TRACE_RESUME(error);
  557. return error;
  558. }
  559. static void async_resume(void *data, async_cookie_t cookie)
  560. {
  561. struct device *dev = (struct device *)data;
  562. int error;
  563. error = device_resume(dev, pm_transition, true);
  564. if (error)
  565. pm_dev_err(dev, pm_transition, " async", error);
  566. put_device(dev);
  567. }
  568. static bool is_async(struct device *dev)
  569. {
  570. return dev->power.async_suspend && pm_async_enabled
  571. && !pm_trace_is_enabled();
  572. }
  573. /**
  574. * dpm_drv_timeout - Driver suspend / resume watchdog handler
  575. * @data: struct device which timed out
  576. *
  577. * Called when a driver has timed out suspending or resuming.
  578. * There's not much we can do here to recover so
  579. * BUG() out for a crash-dump
  580. *
  581. */
  582. static void dpm_drv_timeout(unsigned long data)
  583. {
  584. struct dpm_drv_wd_data *wd_data = (void *)data;
  585. struct device *dev = wd_data->dev;
  586. struct task_struct *tsk = wd_data->tsk;
  587. printk(KERN_EMERG "**** DPM device timeout: %s (%s)\n", dev_name(dev),
  588. (dev->driver ? dev->driver->name : "no driver"));
  589. printk(KERN_EMERG "dpm suspend stack:\n");
  590. show_stack(tsk, NULL);
  591. BUG();
  592. }
  593. /**
  594. * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
  595. * @state: PM transition of the system being carried out.
  596. *
  597. * Execute the appropriate "resume" callback for all devices whose status
  598. * indicates that they are suspended.
  599. */
  600. void dpm_resume(pm_message_t state)
  601. {
  602. struct device *dev;
  603. ktime_t starttime = ktime_get();
  604. might_sleep();
  605. mutex_lock(&dpm_list_mtx);
  606. pm_transition = state;
  607. async_error = 0;
  608. list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
  609. INIT_COMPLETION(dev->power.completion);
  610. if (is_async(dev)) {
  611. get_device(dev);
  612. async_schedule(async_resume, dev);
  613. }
  614. }
  615. while (!list_empty(&dpm_suspended_list)) {
  616. dev = to_device(dpm_suspended_list.next);
  617. get_device(dev);
  618. if (!is_async(dev)) {
  619. int error;
  620. mutex_unlock(&dpm_list_mtx);
  621. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  622. printk(KERN_ERR "HUAWEI RPC DEBUG: resuming %s\n", dev_name(dev));
  623. #endif
  624. error = device_resume(dev, state, false);
  625. #ifdef CONFIG_HUAWEI_RPC_CRASH_DEBUG
  626. printk(KERN_ERR "HUAWEI RPC DEBUG: resumed %s error=%d\n", dev_name(dev), error);
  627. #endif
  628. if (error)
  629. pm_dev_err(dev, state, "", error);
  630. mutex_lock(&dpm_list_mtx);
  631. }
  632. if (!list_empty(&dev->power.entry))
  633. list_move_tail(&dev->power.entry, &dpm_prepared_list);
  634. put_device(dev);
  635. }
  636. mutex_unlock(&dpm_list_mtx);
  637. async_synchronize_full();
  638. dpm_show_time(starttime, state, NULL);
  639. }
  640. /**
  641. * device_complete - Complete a PM transition for given device.
  642. * @dev: Device to handle.
  643. * @state: PM transition of the system being carried out.
  644. */
  645. static void device_complete(struct device *dev, pm_message_t state)
  646. {
  647. device_lock(dev);
  648. if (dev->pwr_domain) {
  649. pm_dev_dbg(dev, state, "completing power domain ");
  650. if (dev->pwr_domain->ops.complete)
  651. dev->pwr_domain->ops.complete(dev);
  652. } else if (dev->type && dev->type->pm) {
  653. pm_dev_dbg(dev, state, "completing type ");
  654. if (dev->type->pm->complete)
  655. dev->type->pm->complete(dev);
  656. } else if (dev->class && dev->class->pm) {
  657. pm_dev_dbg(dev, state, "completing class ");
  658. if (dev->class->pm->complete)
  659. dev->class->pm->complete(dev);
  660. } else if (dev->bus && dev->bus->pm) {
  661. pm_dev_dbg(dev, state, "completing ");
  662. if (dev->bus->pm->complete)
  663. dev->bus->pm->complete(dev);
  664. }
  665. device_unlock(dev);
  666. }
  667. /**
  668. * dpm_complete - Complete a PM transition for all non-sysdev devices.
  669. * @state: PM transition of the system being carried out.
  670. *
  671. * Execute the ->complete() callbacks for all devices whose PM status is not
  672. * DPM_ON (this allows new devices to be registered).
  673. */
  674. void dpm_complete(pm_message_t state)
  675. {
  676. struct list_head list;
  677. might_sleep();
  678. INIT_LIST_HEAD(&list);
  679. mutex_lock(&dpm_list_mtx);
  680. while (!list_empty(&dpm_prepared_list)) {
  681. struct device *dev = to_device(dpm_prepared_list.prev);
  682. get_device(dev);
  683. dev->power.is_prepared = false;
  684. list_move(&dev->power.entry, &list);
  685. mutex_unlock(&dpm_list_mtx);
  686. device_complete(dev, state);
  687. mutex_lock(&dpm_list_mtx);
  688. put_device(dev);
  689. }
  690. list_splice(&list, &dpm_list);
  691. mutex_unlock(&dpm_list_mtx);
  692. }
  693. /**
  694. * dpm_resume_end - Execute "resume" callbacks and complete system transition.
  695. * @state: PM transition of the system being carried out.
  696. *
  697. * Execute "resume" callbacks for all devices and complete the PM transition of
  698. * the system.
  699. */
  700. void dpm_resume_end(pm_message_t state)
  701. {
  702. dpm_resume(state);
  703. dpm_complete(state);
  704. }
  705. EXPORT_SYMBOL_GPL(dpm_resume_end);
  706. /*------------------------- Suspend routines -------------------------*/
  707. /**
  708. * resume_event - Return a "resume" message for given "suspend" sleep state.
  709. * @sleep_state: PM message representing a sleep state.
  710. *
  711. * Return a PM message representing the resume event corresponding to given
  712. * sleep state.
  713. */
  714. static pm_message_t resume_event(pm_message_t sleep_state)
  715. {
  716. switch (sleep_state.event) {
  717. case PM_EVENT_SUSPEND:
  718. return PMSG_RESUME;
  719. case PM_EVENT_FREEZE:
  720. case PM_EVENT_QUIESCE:
  721. return PMSG_RECOVER;
  722. case PM_EVENT_HIBERNATE:
  723. return PMSG_RESTORE;
  724. }
  725. return PMSG_ON;
  726. }
  727. /**
  728. * device_suspend_noirq - Execute a "late suspend" callback for given device.
  729. * @dev: Device to handle.
  730. * @state: PM transition of the system being carried out.
  731. *
  732. * The driver of @dev will not receive interrupts while this function is being
  733. * executed.
  734. */
  735. static int device_suspend_noirq(struct device *dev, pm_message_t state)
  736. {
  737. int error;
  738. if (dev->pwr_domain) {
  739. pm_dev_dbg(dev, state, "LATE power domain ");
  740. error = pm_noirq_op(dev, &dev->pwr_domain->ops, state);
  741. if (error)
  742. return error;
  743. } else if (dev->type && dev->type->pm) {
  744. pm_dev_dbg(dev, state, "LATE type ");
  745. error = pm_noirq_op(dev, dev->type->pm, state);
  746. if (error)
  747. return error;
  748. } else if (dev->class && dev->class->pm) {
  749. pm_dev_dbg(dev, state, "LATE class ");
  750. error = pm_noirq_op(dev, dev->class->pm, state);
  751. if (error)
  752. return error;
  753. } else if (dev->bus && dev->bus->pm) {
  754. pm_dev_dbg(dev, state, "LATE ");
  755. error = pm_noirq_op(dev, dev->bus->pm, state);
  756. if (error)
  757. return error;
  758. }
  759. return 0;
  760. }
  761. /**
  762. * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices.
  763. * @state: PM transition of the system being carried out.
  764. *
  765. * Prevent device drivers from receiving interrupts and call the "noirq" suspend
  766. * handlers for all non-sysdev devices.
  767. */
  768. int dpm_suspend_noirq(pm_message_t state)
  769. {
  770. ktime_t starttime = ktime_get();
  771. int error = 0;
  772. suspend_device_irqs();
  773. mutex_lock(&dpm_list_mtx);
  774. while (!list_empty(&dpm_suspended_list)) {
  775. struct device *dev = to_device(dpm_suspended_list.prev);
  776. get_device(dev);
  777. mutex_unlock(&dpm_list_mtx);
  778. error = device_suspend_noirq(dev, state);
  779. mutex_lock(&dpm_list_mtx);
  780. if (error) {
  781. pm_dev_err(dev, state, " late", error);
  782. put_device(dev);
  783. break;
  784. }
  785. if (!list_empty(&dev->power.entry))
  786. list_move(&dev->power.entry, &dpm_noirq_list);
  787. put_device(dev);
  788. }
  789. mutex_unlock(&dpm_list_mtx);
  790. if (error)
  791. dpm_resume_noirq(resume_event(state));
  792. else
  793. dpm_show_time(starttime, state, "late");
  794. return error;
  795. }
  796. EXPORT_SYMBOL_GPL(dpm_suspend_noirq);
  797. /**
  798. * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
  799. * @dev: Device to suspend.
  800. * @state: PM transition of the system being carried out.
  801. * @cb: Suspend callback to execute.
  802. */
  803. static int legacy_suspend(struct device *dev, pm_message_t state,
  804. int (*cb)(struct device *dev, pm_message_t state))
  805. {
  806. int error;
  807. ktime_t calltime;
  808. calltime = initcall_debug_start(dev);
  809. error = cb(dev, state);
  810. suspend_report_result(cb, error);
  811. initcall_debug_report(dev, calltime, error);
  812. return error;
  813. }
  814. /**
  815. * device_suspend - Execute "suspend" callbacks for given device.
  816. * @dev: Device to handle.
  817. * @state: PM transition of the system being carried out.
  818. * @async: If true, the device is being suspended asynchronously.
  819. */
  820. static int __device_suspend(struct device *dev, pm_message_t state, bool async)
  821. {
  822. int error = 0;
  823. struct timer_list timer;
  824. struct dpm_drv_wd_data data;
  825. dpm_wait_for_children(dev, async);
  826. data.dev = dev;
  827. data.tsk = get_current();
  828. init_timer_on_stack(&timer);
  829. timer.expires = jiffies + HZ * 12;
  830. timer.function = dpm_drv_timeout;
  831. timer.data = (unsigned long)&data;
  832. add_timer(&timer);
  833. device_lock(dev);
  834. if (async_error)
  835. goto Unlock;
  836. if (pm_wakeup_pending()) {
  837. async_error = -EBUSY;
  838. goto Unlock;
  839. }
  840. if (dev->pwr_domain) {
  841. pm_dev_dbg(dev, state, "power domain ");
  842. error = pm_op(dev, &dev->pwr_domain->ops, state);
  843. goto End;
  844. }
  845. if (dev->type && dev->type->pm) {
  846. pm_dev_dbg(dev, state, "type ");
  847. error = pm_op(dev, dev->type->pm, state);
  848. goto End;
  849. }
  850. if (dev->class) {
  851. if (dev->class->pm) {
  852. pm_dev_dbg(dev, state, "class ");
  853. error = pm_op(dev, dev->class->pm, state);
  854. goto End;
  855. } else if (dev->class->suspend) {
  856. pm_dev_dbg(dev, state, "legacy class ");
  857. error = legacy_suspend(dev, state, dev->class->suspend);
  858. goto End;
  859. }
  860. }
  861. if (dev->bus) {
  862. if (dev->bus->pm) {
  863. pm_dev_dbg(dev, state, "");
  864. error = pm_op(dev, dev->bus->pm, state);
  865. } else if (dev->bus->suspend) {
  866. pm_dev_dbg(dev, state, "legacy ");
  867. error = legacy_suspend(dev, state, dev->bus->suspend);
  868. }
  869. }
  870. End:
  871. dev->power.is_suspended = !error;
  872. Unlock:
  873. device_unlock(dev);
  874. del_timer_sync(&timer);
  875. destroy_timer_on_stack(&timer);
  876. complete_all(&dev->power.completion);
  877. if (error)
  878. async_error = error;
  879. return error;
  880. }
  881. static void async_suspend(void *data, async_cookie_t cookie)
  882. {
  883. struct device *dev = (struct device *)data;
  884. int error;
  885. error = __device_suspend(dev, pm_transition, true);
  886. if (error)
  887. pm_dev_err(dev, pm_transition, " async", error);
  888. put_device(dev);
  889. }
  890. static int device_suspend(struct device *dev)
  891. {
  892. INIT_COMPLETION(dev->power.completion);
  893. if (pm_async_enabled && dev->power.async_suspend) {
  894. get_device(dev);
  895. async_schedule(async_suspend, dev);
  896. return 0;
  897. }
  898. return __device_suspend(dev, pm_transition, false);
  899. }
  900. /**
  901. * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
  902. * @state: PM transition of the system being carried out.
  903. */
  904. int dpm_suspend(pm_message_t state)
  905. {
  906. ktime_t starttime = ktime_get();
  907. int error = 0;
  908. might_sleep();
  909. mutex_lock(&dpm_list_mtx);
  910. pm_transition = state;
  911. async_error = 0;
  912. while (!list_empty(&dpm_prepared_list)) {
  913. struct device *dev = to_device(dpm_prepared_list.prev);
  914. get_device(dev);
  915. mutex_unlock(&dpm_list_mtx);
  916. error = device_suspend(dev);
  917. mutex_lock(&dpm_list_mtx);
  918. if (error) {
  919. pm_dev_err(dev, state, "", error);
  920. put_device(dev);
  921. break;
  922. }
  923. if (!list_empty(&dev->power.entry))
  924. list_move(&dev->power.entry, &dpm_suspended_list);
  925. put_device(dev);
  926. if (async_error)
  927. break;
  928. }
  929. mutex_unlock(&dpm_list_mtx);
  930. async_synchronize_full();
  931. if (!error)
  932. error = async_error;
  933. if (!error)
  934. dpm_show_time(starttime, state, NULL);
  935. return error;
  936. }
  937. /**
  938. * device_prepare - Prepare a device for system power transition.
  939. * @dev: Device to handle.
  940. * @state: PM transition of the system being carried out.
  941. *
  942. * Execute the ->prepare() callback(s) for given device. No new children of the
  943. * device may be registered after this function has returned.
  944. */
  945. static int device_prepare(struct device *dev, pm_message_t state)
  946. {
  947. int error = 0;
  948. device_lock(dev);
  949. if (dev->pwr_domain) {
  950. pm_dev_dbg(dev, state, "preparing power domain ");
  951. if (dev->pwr_domain->ops.prepare)
  952. error = dev->pwr_domain->ops.prepare(dev);
  953. suspend_report_result(dev->pwr_domain->ops.prepare, error);
  954. if (error)
  955. goto End;
  956. } else if (dev->type && dev->type->pm) {
  957. pm_dev_dbg(dev, state, "preparing type ");
  958. if (dev->type->pm->prepare)
  959. error = dev->type->pm->prepare(dev);
  960. suspend_report_result(dev->type->pm->prepare, error);
  961. if (error)
  962. goto End;
  963. } else if (dev->class && dev->class->pm) {
  964. pm_dev_dbg(dev, state, "preparing class ");
  965. if (dev->class->pm->prepare)
  966. error = dev->class->pm->prepare(dev);
  967. suspend_report_result(dev->class->pm->prepare, error);
  968. if (error)
  969. goto End;
  970. } else if (dev->bus && dev->bus->pm) {
  971. pm_dev_dbg(dev, state, "preparing ");
  972. if (dev->bus->pm->prepare)
  973. error = dev->bus->pm->prepare(dev);
  974. suspend_report_result(dev->bus->pm->prepare, error);
  975. }
  976. End:
  977. device_unlock(dev);
  978. return error;
  979. }
  980. /**
  981. * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
  982. * @state: PM transition of the system being carried out.
  983. *
  984. * Execute the ->prepare() callback(s) for all devices.
  985. */
  986. int dpm_prepare(pm_message_t state)
  987. {
  988. int error = 0;
  989. might_sleep();
  990. mutex_lock(&dpm_list_mtx);
  991. while (!list_empty(&dpm_list)) {
  992. struct device *dev = to_device(dpm_list.next);
  993. get_device(dev);
  994. mutex_unlock(&dpm_list_mtx);
  995. pm_runtime_get_noresume(dev);
  996. if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
  997. pm_wakeup_event(dev, 0);
  998. pm_runtime_put_sync(dev);
  999. error = pm_wakeup_pending() ?
  1000. -EBUSY : device_prepare(dev, state);
  1001. mutex_lock(&dpm_list_mtx);
  1002. if (error) {
  1003. if (error == -EAGAIN) {
  1004. put_device(dev);
  1005. error = 0;
  1006. continue;
  1007. }
  1008. printk(KERN_INFO "PM: Device %s not prepared "
  1009. "for power transition: code %d\n",
  1010. dev_name(dev), error);
  1011. put_device(dev);
  1012. break;
  1013. }
  1014. dev->power.is_prepared = true;
  1015. if (!list_empty(&dev->power.entry))
  1016. list_move_tail(&dev->power.entry, &dpm_prepared_list);
  1017. put_device(dev);
  1018. }
  1019. mutex_unlock(&dpm_list_mtx);
  1020. return error;
  1021. }
  1022. /**
  1023. * dpm_suspend_start - Prepare devices for PM transition and suspend them.
  1024. * @state: PM transition of the system being carried out.
  1025. *
  1026. * Prepare all non-sysdev devices for system PM transition and execute "suspend"
  1027. * callbacks for them.
  1028. */
  1029. int dpm_suspend_start(pm_message_t state)
  1030. {
  1031. int error;
  1032. error = dpm_prepare(state);
  1033. if (!error)
  1034. error = dpm_suspend(state);
  1035. return error;
  1036. }
  1037. EXPORT_SYMBOL_GPL(dpm_suspend_start);
  1038. void __suspend_report_result(const char *function, void *fn, int ret)
  1039. {
  1040. if (ret)
  1041. printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
  1042. }
  1043. EXPORT_SYMBOL_GPL(__suspend_report_result);
  1044. /**
  1045. * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
  1046. * @dev: Device to wait for.
  1047. * @subordinate: Device that needs to wait for @dev.
  1048. */
  1049. int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
  1050. {
  1051. dpm_wait(dev, subordinate->power.async_suspend);
  1052. return async_error;
  1053. }
  1054. EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);