/net/socket.c
C | 3505 lines | 2541 code | 501 blank | 463 comment | 401 complexity | 8d5656caf9ddf051858bf9f47c7d6911 MD5 | raw file
Large files files are truncated, but you can click here to view the full file
1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/mm.h> 62#include <linux/socket.h> 63#include <linux/file.h> 64#include <linux/net.h> 65#include <linux/interrupt.h> 66#include <linux/thread_info.h> 67#include <linux/rcupdate.h> 68#include <linux/netdevice.h> 69#include <linux/proc_fs.h> 70#include <linux/seq_file.h> 71#include <linux/mutex.h> 72#include <linux/wanrouter.h> 73#include <linux/if_bridge.h> 74#include <linux/if_frad.h> 75#include <linux/if_vlan.h> 76#include <linux/init.h> 77#include <linux/poll.h> 78#include <linux/cache.h> 79#include <linux/module.h> 80#include <linux/highmem.h> 81#include <linux/mount.h> 82#include <linux/security.h> 83#include <linux/syscalls.h> 84#include <linux/compat.h> 85#include <linux/kmod.h> 86#include <linux/audit.h> 87#include <linux/wireless.h> 88#include <linux/nsproxy.h> 89#include <linux/magic.h> 90#include <linux/slab.h> 91#include <linux/xattr.h> 92 93#include <asm/uaccess.h> 94#include <asm/unistd.h> 95 96#include <net/compat.h> 97#include <net/wext.h> 98#include <net/cls_cgroup.h> 99 100#include <net/sock.h> 101#include <linux/netfilter.h> 102 103#include <linux/if_tun.h> 104#include <linux/ipv6_route.h> 105#include <linux/route.h> 106#include <linux/sockios.h> 107#include <linux/atalk.h> 108 109static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 110static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 111 unsigned long nr_segs, loff_t pos); 112static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 113 unsigned long nr_segs, loff_t pos); 114static int sock_mmap(struct file *file, struct vm_area_struct *vma); 115 116static int sock_close(struct inode *inode, struct file *file); 117static unsigned int sock_poll(struct file *file, 118 struct poll_table_struct *wait); 119static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 120#ifdef CONFIG_COMPAT 121static long compat_sock_ioctl(struct file *file, 122 unsigned int cmd, unsigned long arg); 123#endif 124static int sock_fasync(int fd, struct file *filp, int on); 125static ssize_t sock_sendpage(struct file *file, struct page *page, 126 int offset, size_t size, loff_t *ppos, int more); 127static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 128 struct pipe_inode_info *pipe, size_t len, 129 unsigned int flags); 130 131/* 132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 133 * in the operation structures but are done directly via the socketcall() multiplexor. 134 */ 135 136static const struct file_operations socket_file_ops = { 137 .owner = THIS_MODULE, 138 .llseek = no_llseek, 139 .aio_read = sock_aio_read, 140 .aio_write = sock_aio_write, 141 .poll = sock_poll, 142 .unlocked_ioctl = sock_ioctl, 143#ifdef CONFIG_COMPAT 144 .compat_ioctl = compat_sock_ioctl, 145#endif 146 .mmap = sock_mmap, 147 .open = sock_no_open, /* special open code to disallow open via /proc */ 148 .release = sock_close, 149 .fasync = sock_fasync, 150 .sendpage = sock_sendpage, 151 .splice_write = generic_splice_sendpage, 152 .splice_read = sock_splice_read, 153}; 154 155/* 156 * The protocol list. Each protocol is registered in here. 157 */ 158 159static DEFINE_SPINLOCK(net_family_lock); 160static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 161 162/* 163 * Statistics counters of the socket lists 164 */ 165 166static DEFINE_PER_CPU(int, sockets_in_use); 167 168/* 169 * Support routines. 170 * Move socket addresses back and forth across the kernel/user 171 * divide and look after the messy bits. 172 */ 173 174/** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 186{ 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194} 195 196/** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 214 void __user *uaddr, int __user *ulen) 215{ 216 int err; 217 int len; 218 219 BUG_ON(klen > sizeof(struct sockaddr_storage)); 220 err = get_user(len, ulen); 221 if (err) 222 return err; 223 if (len > klen) 224 len = klen; 225 if (len < 0) 226 return -EINVAL; 227 if (len) { 228 if (audit_sockaddr(klen, kaddr)) 229 return -ENOMEM; 230 if (copy_to_user(uaddr, kaddr, len)) 231 return -EFAULT; 232 } 233 /* 234 * "fromlen shall refer to the value before truncation.." 235 * 1003.1g 236 */ 237 return __put_user(klen, ulen); 238} 239 240static struct kmem_cache *sock_inode_cachep __read_mostly; 241 242static struct inode *sock_alloc_inode(struct super_block *sb) 243{ 244 struct socket_alloc *ei; 245 struct socket_wq *wq; 246 247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 248 if (!ei) 249 return NULL; 250 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 251 if (!wq) { 252 kmem_cache_free(sock_inode_cachep, ei); 253 return NULL; 254 } 255 init_waitqueue_head(&wq->wait); 256 wq->fasync_list = NULL; 257 RCU_INIT_POINTER(ei->socket.wq, wq); 258 259 ei->socket.state = SS_UNCONNECTED; 260 ei->socket.flags = 0; 261 ei->socket.ops = NULL; 262 ei->socket.sk = NULL; 263 ei->socket.file = NULL; 264 265 return &ei->vfs_inode; 266} 267 268static void sock_destroy_inode(struct inode *inode) 269{ 270 struct socket_alloc *ei; 271 struct socket_wq *wq; 272 273 ei = container_of(inode, struct socket_alloc, vfs_inode); 274 wq = rcu_dereference_protected(ei->socket.wq, 1); 275 kfree_rcu(wq, rcu); 276 kmem_cache_free(sock_inode_cachep, ei); 277} 278 279static void init_once(void *foo) 280{ 281 struct socket_alloc *ei = (struct socket_alloc *)foo; 282 283 inode_init_once(&ei->vfs_inode); 284} 285 286static int init_inodecache(void) 287{ 288 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 289 sizeof(struct socket_alloc), 290 0, 291 (SLAB_HWCACHE_ALIGN | 292 SLAB_RECLAIM_ACCOUNT | 293 SLAB_MEM_SPREAD), 294 init_once); 295 if (sock_inode_cachep == NULL) 296 return -ENOMEM; 297 return 0; 298} 299 300static const struct super_operations sockfs_ops = { 301 .alloc_inode = sock_alloc_inode, 302 .destroy_inode = sock_destroy_inode, 303 .statfs = simple_statfs, 304}; 305 306/* 307 * sockfs_dname() is called from d_path(). 308 */ 309static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 310{ 311 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 312 dentry->d_inode->i_ino); 313} 314 315static const struct dentry_operations sockfs_dentry_operations = { 316 .d_dname = sockfs_dname, 317}; 318 319static struct dentry *sockfs_mount(struct file_system_type *fs_type, 320 int flags, const char *dev_name, void *data) 321{ 322 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 323 &sockfs_dentry_operations, SOCKFS_MAGIC); 324} 325 326static struct vfsmount *sock_mnt __read_mostly; 327 328static struct file_system_type sock_fs_type = { 329 .name = "sockfs", 330 .mount = sockfs_mount, 331 .kill_sb = kill_anon_super, 332}; 333 334/* 335 * Obtains the first available file descriptor and sets it up for use. 336 * 337 * These functions create file structures and maps them to fd space 338 * of the current process. On success it returns file descriptor 339 * and file struct implicitly stored in sock->file. 340 * Note that another thread may close file descriptor before we return 341 * from this function. We use the fact that now we do not refer 342 * to socket after mapping. If one day we will need it, this 343 * function will increment ref. count on file by 1. 344 * 345 * In any case returned fd MAY BE not valid! 346 * This race condition is unavoidable 347 * with shared fd spaces, we cannot solve it inside kernel, 348 * but we take care of internal coherence yet. 349 */ 350 351struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 352{ 353 struct qstr name = { .name = "" }; 354 struct path path; 355 struct file *file; 356 357 if (dname) { 358 name.name = dname; 359 name.len = strlen(name.name); 360 } else if (sock->sk) { 361 name.name = sock->sk->sk_prot_creator->name; 362 name.len = strlen(name.name); 363 } 364 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 365 if (unlikely(!path.dentry)) 366 return ERR_PTR(-ENOMEM); 367 path.mnt = mntget(sock_mnt); 368 369 d_instantiate(path.dentry, SOCK_INODE(sock)); 370 SOCK_INODE(sock)->i_fop = &socket_file_ops; 371 372 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 373 &socket_file_ops); 374 if (unlikely(!file)) { 375 /* drop dentry, keep inode */ 376 ihold(path.dentry->d_inode); 377 path_put(&path); 378 return ERR_PTR(-ENFILE); 379 } 380 381 sock->file = file; 382 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 383 file->f_pos = 0; 384 file->private_data = sock; 385 return file; 386} 387EXPORT_SYMBOL(sock_alloc_file); 388 389static int sock_map_fd(struct socket *sock, int flags) 390{ 391 struct file *newfile; 392 int fd = get_unused_fd_flags(flags); 393 if (unlikely(fd < 0)) 394 return fd; 395 396 newfile = sock_alloc_file(sock, flags, NULL); 397 if (likely(!IS_ERR(newfile))) { 398 fd_install(fd, newfile); 399 return fd; 400 } 401 402 put_unused_fd(fd); 403 return PTR_ERR(newfile); 404} 405 406struct socket *sock_from_file(struct file *file, int *err) 407{ 408 if (file->f_op == &socket_file_ops) 409 return file->private_data; /* set in sock_map_fd */ 410 411 *err = -ENOTSOCK; 412 return NULL; 413} 414EXPORT_SYMBOL(sock_from_file); 415 416/** 417 * sockfd_lookup - Go from a file number to its socket slot 418 * @fd: file handle 419 * @err: pointer to an error code return 420 * 421 * The file handle passed in is locked and the socket it is bound 422 * too is returned. If an error occurs the err pointer is overwritten 423 * with a negative errno code and NULL is returned. The function checks 424 * for both invalid handles and passing a handle which is not a socket. 425 * 426 * On a success the socket object pointer is returned. 427 */ 428 429struct socket *sockfd_lookup(int fd, int *err) 430{ 431 struct file *file; 432 struct socket *sock; 433 434 file = fget(fd); 435 if (!file) { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 sock = sock_from_file(file, err); 441 if (!sock) 442 fput(file); 443 return sock; 444} 445EXPORT_SYMBOL(sockfd_lookup); 446 447static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 448{ 449 struct file *file; 450 struct socket *sock; 451 452 *err = -EBADF; 453 file = fget_light(fd, fput_needed); 454 if (file) { 455 sock = sock_from_file(file, err); 456 if (sock) 457 return sock; 458 fput_light(file, *fput_needed); 459 } 460 return NULL; 461} 462 463#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 464#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 465#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 466static ssize_t sockfs_getxattr(struct dentry *dentry, 467 const char *name, void *value, size_t size) 468{ 469 const char *proto_name; 470 size_t proto_size; 471 int error; 472 473 error = -ENODATA; 474 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 475 proto_name = dentry->d_name.name; 476 proto_size = strlen(proto_name); 477 478 if (value) { 479 error = -ERANGE; 480 if (proto_size + 1 > size) 481 goto out; 482 483 strncpy(value, proto_name, proto_size + 1); 484 } 485 error = proto_size + 1; 486 } 487 488out: 489 return error; 490} 491 492static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 493 size_t size) 494{ 495 ssize_t len; 496 ssize_t used = 0; 497 498 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 499 if (len < 0) 500 return len; 501 used += len; 502 if (buffer) { 503 if (size < used) 504 return -ERANGE; 505 buffer += len; 506 } 507 508 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 509 used += len; 510 if (buffer) { 511 if (size < used) 512 return -ERANGE; 513 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 514 buffer += len; 515 } 516 517 return used; 518} 519 520static const struct inode_operations sockfs_inode_ops = { 521 .getxattr = sockfs_getxattr, 522 .listxattr = sockfs_listxattr, 523}; 524 525/** 526 * sock_alloc - allocate a socket 527 * 528 * Allocate a new inode and socket object. The two are bound together 529 * and initialised. The socket is then returned. If we are out of inodes 530 * NULL is returned. 531 */ 532 533static struct socket *sock_alloc(void) 534{ 535 struct inode *inode; 536 struct socket *sock; 537 538 inode = new_inode_pseudo(sock_mnt->mnt_sb); 539 if (!inode) 540 return NULL; 541 542 sock = SOCKET_I(inode); 543 544 kmemcheck_annotate_bitfield(sock, type); 545 inode->i_ino = get_next_ino(); 546 inode->i_mode = S_IFSOCK | S_IRWXUGO; 547 inode->i_uid = current_fsuid(); 548 inode->i_gid = current_fsgid(); 549 inode->i_op = &sockfs_inode_ops; 550 551 this_cpu_add(sockets_in_use, 1); 552 return sock; 553} 554 555/* 556 * In theory you can't get an open on this inode, but /proc provides 557 * a back door. Remember to keep it shut otherwise you'll let the 558 * creepy crawlies in. 559 */ 560 561static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 562{ 563 return -ENXIO; 564} 565 566const struct file_operations bad_sock_fops = { 567 .owner = THIS_MODULE, 568 .open = sock_no_open, 569 .llseek = noop_llseek, 570}; 571 572/** 573 * sock_release - close a socket 574 * @sock: socket to close 575 * 576 * The socket is released from the protocol stack if it has a release 577 * callback, and the inode is then released if the socket is bound to 578 * an inode not a file. 579 */ 580 581void sock_release(struct socket *sock) 582{ 583 if (sock->ops) { 584 struct module *owner = sock->ops->owner; 585 586 sock->ops->release(sock); 587 sock->ops = NULL; 588 module_put(owner); 589 } 590 591 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 592 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 593 594 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 595 return; 596 597 this_cpu_sub(sockets_in_use, 1); 598 if (!sock->file) { 599 iput(SOCK_INODE(sock)); 600 return; 601 } 602 sock->file = NULL; 603} 604EXPORT_SYMBOL(sock_release); 605 606int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 607{ 608 *tx_flags = 0; 609 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 610 *tx_flags |= SKBTX_HW_TSTAMP; 611 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 612 *tx_flags |= SKBTX_SW_TSTAMP; 613 if (sock_flag(sk, SOCK_WIFI_STATUS)) 614 *tx_flags |= SKBTX_WIFI_STATUS; 615 return 0; 616} 617EXPORT_SYMBOL(sock_tx_timestamp); 618 619static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 620 struct msghdr *msg, size_t size) 621{ 622 struct sock_iocb *si = kiocb_to_siocb(iocb); 623 624 si->sock = sock; 625 si->scm = NULL; 626 si->msg = msg; 627 si->size = size; 628 629 return sock->ops->sendmsg(iocb, sock, msg, size); 630} 631 632static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 633 struct msghdr *msg, size_t size) 634{ 635 int err = security_socket_sendmsg(sock, msg, size); 636 637 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 638} 639 640int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 641{ 642 struct kiocb iocb; 643 struct sock_iocb siocb; 644 int ret; 645 646 init_sync_kiocb(&iocb, NULL); 647 iocb.private = &siocb; 648 ret = __sock_sendmsg(&iocb, sock, msg, size); 649 if (-EIOCBQUEUED == ret) 650 ret = wait_on_sync_kiocb(&iocb); 651 return ret; 652} 653EXPORT_SYMBOL(sock_sendmsg); 654 655static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 656{ 657 struct kiocb iocb; 658 struct sock_iocb siocb; 659 int ret; 660 661 init_sync_kiocb(&iocb, NULL); 662 iocb.private = &siocb; 663 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 664 if (-EIOCBQUEUED == ret) 665 ret = wait_on_sync_kiocb(&iocb); 666 return ret; 667} 668 669int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 670 struct kvec *vec, size_t num, size_t size) 671{ 672 mm_segment_t oldfs = get_fs(); 673 int result; 674 675 set_fs(KERNEL_DS); 676 /* 677 * the following is safe, since for compiler definitions of kvec and 678 * iovec are identical, yielding the same in-core layout and alignment 679 */ 680 msg->msg_iov = (struct iovec *)vec; 681 msg->msg_iovlen = num; 682 result = sock_sendmsg(sock, msg, size); 683 set_fs(oldfs); 684 return result; 685} 686EXPORT_SYMBOL(kernel_sendmsg); 687 688static int ktime2ts(ktime_t kt, struct timespec *ts) 689{ 690 if (kt.tv64) { 691 *ts = ktime_to_timespec(kt); 692 return 1; 693 } else { 694 return 0; 695 } 696} 697 698/* 699 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 700 */ 701void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 702 struct sk_buff *skb) 703{ 704 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 705 struct timespec ts[3]; 706 int empty = 1; 707 struct skb_shared_hwtstamps *shhwtstamps = 708 skb_hwtstamps(skb); 709 710 /* Race occurred between timestamp enabling and packet 711 receiving. Fill in the current time for now. */ 712 if (need_software_tstamp && skb->tstamp.tv64 == 0) 713 __net_timestamp(skb); 714 715 if (need_software_tstamp) { 716 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 717 struct timeval tv; 718 skb_get_timestamp(skb, &tv); 719 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 720 sizeof(tv), &tv); 721 } else { 722 skb_get_timestampns(skb, &ts[0]); 723 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 724 sizeof(ts[0]), &ts[0]); 725 } 726 } 727 728 729 memset(ts, 0, sizeof(ts)); 730 if (skb->tstamp.tv64 && 731 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 732 skb_get_timestampns(skb, ts + 0); 733 empty = 0; 734 } 735 if (shhwtstamps) { 736 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 737 ktime2ts(shhwtstamps->syststamp, ts + 1)) 738 empty = 0; 739 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 740 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 741 empty = 0; 742 } 743 if (!empty) 744 put_cmsg(msg, SOL_SOCKET, 745 SCM_TIMESTAMPING, sizeof(ts), &ts); 746} 747EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 748 749void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 750 struct sk_buff *skb) 751{ 752 int ack; 753 754 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 755 return; 756 if (!skb->wifi_acked_valid) 757 return; 758 759 ack = skb->wifi_acked; 760 761 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 762} 763EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 764 765static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 766 struct sk_buff *skb) 767{ 768 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 769 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 770 sizeof(__u32), &skb->dropcount); 771} 772 773void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 774 struct sk_buff *skb) 775{ 776 sock_recv_timestamp(msg, sk, skb); 777 sock_recv_drops(msg, sk, skb); 778} 779EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 780 781static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 782 struct msghdr *msg, size_t size, int flags) 783{ 784 struct sock_iocb *si = kiocb_to_siocb(iocb); 785 786 si->sock = sock; 787 si->scm = NULL; 788 si->msg = msg; 789 si->size = size; 790 si->flags = flags; 791 792 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 793} 794 795static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 796 struct msghdr *msg, size_t size, int flags) 797{ 798 int err = security_socket_recvmsg(sock, msg, size, flags); 799 800 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 801} 802 803int sock_recvmsg(struct socket *sock, struct msghdr *msg, 804 size_t size, int flags) 805{ 806 struct kiocb iocb; 807 struct sock_iocb siocb; 808 int ret; 809 810 init_sync_kiocb(&iocb, NULL); 811 iocb.private = &siocb; 812 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 813 if (-EIOCBQUEUED == ret) 814 ret = wait_on_sync_kiocb(&iocb); 815 return ret; 816} 817EXPORT_SYMBOL(sock_recvmsg); 818 819static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 820 size_t size, int flags) 821{ 822 struct kiocb iocb; 823 struct sock_iocb siocb; 824 int ret; 825 826 init_sync_kiocb(&iocb, NULL); 827 iocb.private = &siocb; 828 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 829 if (-EIOCBQUEUED == ret) 830 ret = wait_on_sync_kiocb(&iocb); 831 return ret; 832} 833 834/** 835 * kernel_recvmsg - Receive a message from a socket (kernel space) 836 * @sock: The socket to receive the message from 837 * @msg: Received message 838 * @vec: Input s/g array for message data 839 * @num: Size of input s/g array 840 * @size: Number of bytes to read 841 * @flags: Message flags (MSG_DONTWAIT, etc...) 842 * 843 * On return the msg structure contains the scatter/gather array passed in the 844 * vec argument. The array is modified so that it consists of the unfilled 845 * portion of the original array. 846 * 847 * The returned value is the total number of bytes received, or an error. 848 */ 849int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 850 struct kvec *vec, size_t num, size_t size, int flags) 851{ 852 mm_segment_t oldfs = get_fs(); 853 int result; 854 855 set_fs(KERNEL_DS); 856 /* 857 * the following is safe, since for compiler definitions of kvec and 858 * iovec are identical, yielding the same in-core layout and alignment 859 */ 860 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 861 result = sock_recvmsg(sock, msg, size, flags); 862 set_fs(oldfs); 863 return result; 864} 865EXPORT_SYMBOL(kernel_recvmsg); 866 867static void sock_aio_dtor(struct kiocb *iocb) 868{ 869 kfree(iocb->private); 870} 871 872static ssize_t sock_sendpage(struct file *file, struct page *page, 873 int offset, size_t size, loff_t *ppos, int more) 874{ 875 struct socket *sock; 876 int flags; 877 878 sock = file->private_data; 879 880 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 881 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 882 flags |= more; 883 884 return kernel_sendpage(sock, page, offset, size, flags); 885} 886 887static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 888 struct pipe_inode_info *pipe, size_t len, 889 unsigned int flags) 890{ 891 struct socket *sock = file->private_data; 892 893 if (unlikely(!sock->ops->splice_read)) 894 return -EINVAL; 895 896 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 897} 898 899static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 900 struct sock_iocb *siocb) 901{ 902 if (!is_sync_kiocb(iocb)) { 903 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 904 if (!siocb) 905 return NULL; 906 iocb->ki_dtor = sock_aio_dtor; 907 } 908 909 siocb->kiocb = iocb; 910 iocb->private = siocb; 911 return siocb; 912} 913 914static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 915 struct file *file, const struct iovec *iov, 916 unsigned long nr_segs) 917{ 918 struct socket *sock = file->private_data; 919 size_t size = 0; 920 int i; 921 922 for (i = 0; i < nr_segs; i++) 923 size += iov[i].iov_len; 924 925 msg->msg_name = NULL; 926 msg->msg_namelen = 0; 927 msg->msg_control = NULL; 928 msg->msg_controllen = 0; 929 msg->msg_iov = (struct iovec *)iov; 930 msg->msg_iovlen = nr_segs; 931 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 932 933 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 934} 935 936static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 937 unsigned long nr_segs, loff_t pos) 938{ 939 struct sock_iocb siocb, *x; 940 941 if (pos != 0) 942 return -ESPIPE; 943 944 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 945 return 0; 946 947 948 x = alloc_sock_iocb(iocb, &siocb); 949 if (!x) 950 return -ENOMEM; 951 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 952} 953 954static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 955 struct file *file, const struct iovec *iov, 956 unsigned long nr_segs) 957{ 958 struct socket *sock = file->private_data; 959 size_t size = 0; 960 int i; 961 962 for (i = 0; i < nr_segs; i++) 963 size += iov[i].iov_len; 964 965 msg->msg_name = NULL; 966 msg->msg_namelen = 0; 967 msg->msg_control = NULL; 968 msg->msg_controllen = 0; 969 msg->msg_iov = (struct iovec *)iov; 970 msg->msg_iovlen = nr_segs; 971 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 972 if (sock->type == SOCK_SEQPACKET) 973 msg->msg_flags |= MSG_EOR; 974 975 return __sock_sendmsg(iocb, sock, msg, size); 976} 977 978static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 979 unsigned long nr_segs, loff_t pos) 980{ 981 struct sock_iocb siocb, *x; 982 983 if (pos != 0) 984 return -ESPIPE; 985 986 x = alloc_sock_iocb(iocb, &siocb); 987 if (!x) 988 return -ENOMEM; 989 990 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 991} 992 993/* 994 * Atomic setting of ioctl hooks to avoid race 995 * with module unload. 996 */ 997 998static DEFINE_MUTEX(br_ioctl_mutex); 999static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1000 1001void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1002{ 1003 mutex_lock(&br_ioctl_mutex); 1004 br_ioctl_hook = hook; 1005 mutex_unlock(&br_ioctl_mutex); 1006} 1007EXPORT_SYMBOL(brioctl_set); 1008 1009static DEFINE_MUTEX(vlan_ioctl_mutex); 1010static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1011 1012void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1013{ 1014 mutex_lock(&vlan_ioctl_mutex); 1015 vlan_ioctl_hook = hook; 1016 mutex_unlock(&vlan_ioctl_mutex); 1017} 1018EXPORT_SYMBOL(vlan_ioctl_set); 1019 1020static DEFINE_MUTEX(dlci_ioctl_mutex); 1021static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1022 1023void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1024{ 1025 mutex_lock(&dlci_ioctl_mutex); 1026 dlci_ioctl_hook = hook; 1027 mutex_unlock(&dlci_ioctl_mutex); 1028} 1029EXPORT_SYMBOL(dlci_ioctl_set); 1030 1031static long sock_do_ioctl(struct net *net, struct socket *sock, 1032 unsigned int cmd, unsigned long arg) 1033{ 1034 int err; 1035 void __user *argp = (void __user *)arg; 1036 1037 err = sock->ops->ioctl(sock, cmd, arg); 1038 1039 /* 1040 * If this ioctl is unknown try to hand it down 1041 * to the NIC driver. 1042 */ 1043 if (err == -ENOIOCTLCMD) 1044 err = dev_ioctl(net, cmd, argp); 1045 1046 return err; 1047} 1048 1049/* 1050 * With an ioctl, arg may well be a user mode pointer, but we don't know 1051 * what to do with it - that's up to the protocol still. 1052 */ 1053 1054static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1055{ 1056 struct socket *sock; 1057 struct sock *sk; 1058 void __user *argp = (void __user *)arg; 1059 int pid, err; 1060 struct net *net; 1061 1062 sock = file->private_data; 1063 sk = sock->sk; 1064 net = sock_net(sk); 1065 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1066 err = dev_ioctl(net, cmd, argp); 1067 } else 1068#ifdef CONFIG_WEXT_CORE 1069 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1070 err = dev_ioctl(net, cmd, argp); 1071 } else 1072#endif 1073 switch (cmd) { 1074 case FIOSETOWN: 1075 case SIOCSPGRP: 1076 err = -EFAULT; 1077 if (get_user(pid, (int __user *)argp)) 1078 break; 1079 err = f_setown(sock->file, pid, 1); 1080 break; 1081 case FIOGETOWN: 1082 case SIOCGPGRP: 1083 err = put_user(f_getown(sock->file), 1084 (int __user *)argp); 1085 break; 1086 case SIOCGIFBR: 1087 case SIOCSIFBR: 1088 case SIOCBRADDBR: 1089 case SIOCBRDELBR: 1090 err = -ENOPKG; 1091 if (!br_ioctl_hook) 1092 request_module("bridge"); 1093 1094 mutex_lock(&br_ioctl_mutex); 1095 if (br_ioctl_hook) 1096 err = br_ioctl_hook(net, cmd, argp); 1097 mutex_unlock(&br_ioctl_mutex); 1098 break; 1099 case SIOCGIFVLAN: 1100 case SIOCSIFVLAN: 1101 err = -ENOPKG; 1102 if (!vlan_ioctl_hook) 1103 request_module("8021q"); 1104 1105 mutex_lock(&vlan_ioctl_mutex); 1106 if (vlan_ioctl_hook) 1107 err = vlan_ioctl_hook(net, argp); 1108 mutex_unlock(&vlan_ioctl_mutex); 1109 break; 1110 case SIOCADDDLCI: 1111 case SIOCDELDLCI: 1112 err = -ENOPKG; 1113 if (!dlci_ioctl_hook) 1114 request_module("dlci"); 1115 1116 mutex_lock(&dlci_ioctl_mutex); 1117 if (dlci_ioctl_hook) 1118 err = dlci_ioctl_hook(cmd, argp); 1119 mutex_unlock(&dlci_ioctl_mutex); 1120 break; 1121 default: 1122 err = sock_do_ioctl(net, sock, cmd, arg); 1123 break; 1124 } 1125 return err; 1126} 1127 1128int sock_create_lite(int family, int type, int protocol, struct socket **res) 1129{ 1130 int err; 1131 struct socket *sock = NULL; 1132 1133 err = security_socket_create(family, type, protocol, 1); 1134 if (err) 1135 goto out; 1136 1137 sock = sock_alloc(); 1138 if (!sock) { 1139 err = -ENOMEM; 1140 goto out; 1141 } 1142 1143 sock->type = type; 1144 err = security_socket_post_create(sock, family, type, protocol, 1); 1145 if (err) 1146 goto out_release; 1147 1148out: 1149 *res = sock; 1150 return err; 1151out_release: 1152 sock_release(sock); 1153 sock = NULL; 1154 goto out; 1155} 1156EXPORT_SYMBOL(sock_create_lite); 1157 1158/* No kernel lock held - perfect */ 1159static unsigned int sock_poll(struct file *file, poll_table *wait) 1160{ 1161 struct socket *sock; 1162 1163 /* 1164 * We can't return errors to poll, so it's either yes or no. 1165 */ 1166 sock = file->private_data; 1167 return sock->ops->poll(file, sock, wait); 1168} 1169 1170static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1171{ 1172 struct socket *sock = file->private_data; 1173 1174 return sock->ops->mmap(file, sock, vma); 1175} 1176 1177static int sock_close(struct inode *inode, struct file *filp) 1178{ 1179 /* 1180 * It was possible the inode is NULL we were 1181 * closing an unfinished socket. 1182 */ 1183 1184 if (!inode) { 1185 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1186 return 0; 1187 } 1188 sock_release(SOCKET_I(inode)); 1189 return 0; 1190} 1191 1192/* 1193 * Update the socket async list 1194 * 1195 * Fasync_list locking strategy. 1196 * 1197 * 1. fasync_list is modified only under process context socket lock 1198 * i.e. under semaphore. 1199 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1200 * or under socket lock 1201 */ 1202 1203static int sock_fasync(int fd, struct file *filp, int on) 1204{ 1205 struct socket *sock = filp->private_data; 1206 struct sock *sk = sock->sk; 1207 struct socket_wq *wq; 1208 1209 if (sk == NULL) 1210 return -EINVAL; 1211 1212 lock_sock(sk); 1213 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1214 fasync_helper(fd, filp, on, &wq->fasync_list); 1215 1216 if (!wq->fasync_list) 1217 sock_reset_flag(sk, SOCK_FASYNC); 1218 else 1219 sock_set_flag(sk, SOCK_FASYNC); 1220 1221 release_sock(sk); 1222 return 0; 1223} 1224 1225/* This function may be called only under socket lock or callback_lock or rcu_lock */ 1226 1227int sock_wake_async(struct socket *sock, int how, int band) 1228{ 1229 struct socket_wq *wq; 1230 1231 if (!sock) 1232 return -1; 1233 rcu_read_lock(); 1234 wq = rcu_dereference(sock->wq); 1235 if (!wq || !wq->fasync_list) { 1236 rcu_read_unlock(); 1237 return -1; 1238 } 1239 switch (how) { 1240 case SOCK_WAKE_WAITD: 1241 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1242 break; 1243 goto call_kill; 1244 case SOCK_WAKE_SPACE: 1245 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1246 break; 1247 /* fall through */ 1248 case SOCK_WAKE_IO: 1249call_kill: 1250 kill_fasync(&wq->fasync_list, SIGIO, band); 1251 break; 1252 case SOCK_WAKE_URG: 1253 kill_fasync(&wq->fasync_list, SIGURG, band); 1254 } 1255 rcu_read_unlock(); 1256 return 0; 1257} 1258EXPORT_SYMBOL(sock_wake_async); 1259 1260int __sock_create(struct net *net, int family, int type, int protocol, 1261 struct socket **res, int kern) 1262{ 1263 int err; 1264 struct socket *sock; 1265 const struct net_proto_family *pf; 1266 1267 /* 1268 * Check protocol is in range 1269 */ 1270 if (family < 0 || family >= NPROTO) 1271 return -EAFNOSUPPORT; 1272 if (type < 0 || type >= SOCK_MAX) 1273 return -EINVAL; 1274 1275 /* Compatibility. 1276 1277 This uglymoron is moved from INET layer to here to avoid 1278 deadlock in module load. 1279 */ 1280 if (family == PF_INET && type == SOCK_PACKET) { 1281 static int warned; 1282 if (!warned) { 1283 warned = 1; 1284 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1285 current->comm); 1286 } 1287 family = PF_PACKET; 1288 } 1289 1290 err = security_socket_create(family, type, protocol, kern); 1291 if (err) 1292 return err; 1293 1294 /* 1295 * Allocate the socket and allow the family to set things up. if 1296 * the protocol is 0, the family is instructed to select an appropriate 1297 * default. 1298 */ 1299 sock = sock_alloc(); 1300 if (!sock) { 1301 net_warn_ratelimited("socket: no more sockets\n"); 1302 return -ENFILE; /* Not exactly a match, but its the 1303 closest posix thing */ 1304 } 1305 1306 sock->type = type; 1307 1308#ifdef CONFIG_MODULES 1309 /* Attempt to load a protocol module if the find failed. 1310 * 1311 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1312 * requested real, full-featured networking support upon configuration. 1313 * Otherwise module support will break! 1314 */ 1315 if (rcu_access_pointer(net_families[family]) == NULL) 1316 request_module("net-pf-%d", family); 1317#endif 1318 1319 rcu_read_lock(); 1320 pf = rcu_dereference(net_families[family]); 1321 err = -EAFNOSUPPORT; 1322 if (!pf) 1323 goto out_release; 1324 1325 /* 1326 * We will call the ->create function, that possibly is in a loadable 1327 * module, so we have to bump that loadable module refcnt first. 1328 */ 1329 if (!try_module_get(pf->owner)) 1330 goto out_release; 1331 1332 /* Now protected by module ref count */ 1333 rcu_read_unlock(); 1334 1335 err = pf->create(net, sock, protocol, kern); 1336 if (err < 0) 1337 goto out_module_put; 1338 1339 /* 1340 * Now to bump the refcnt of the [loadable] module that owns this 1341 * socket at sock_release time we decrement its refcnt. 1342 */ 1343 if (!try_module_get(sock->ops->owner)) 1344 goto out_module_busy; 1345 1346 /* 1347 * Now that we're done with the ->create function, the [loadable] 1348 * module can have its refcnt decremented 1349 */ 1350 module_put(pf->owner); 1351 err = security_socket_post_create(sock, family, type, protocol, kern); 1352 if (err) 1353 goto out_sock_release; 1354 *res = sock; 1355 1356 return 0; 1357 1358out_module_busy: 1359 err = -EAFNOSUPPORT; 1360out_module_put: 1361 sock->ops = NULL; 1362 module_put(pf->owner); 1363out_sock_release: 1364 sock_release(sock); 1365 return err; 1366 1367out_release: 1368 rcu_read_unlock(); 1369 goto out_sock_release; 1370} 1371EXPORT_SYMBOL(__sock_create); 1372 1373int sock_create(int family, int type, int protocol, struct socket **res) 1374{ 1375 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1376} 1377EXPORT_SYMBOL(sock_create); 1378 1379int sock_create_kern(int family, int type, int protocol, struct socket **res) 1380{ 1381 return __sock_create(&init_net, family, type, protocol, res, 1); 1382} 1383EXPORT_SYMBOL(sock_create_kern); 1384 1385SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1386{ 1387 int retval; 1388 struct socket *sock; 1389 int flags; 1390 1391 /* Check the SOCK_* constants for consistency. */ 1392 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1393 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1394 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1395 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1396 1397 flags = type & ~SOCK_TYPE_MASK; 1398 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1399 return -EINVAL; 1400 type &= SOCK_TYPE_MASK; 1401 1402 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1403 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1404 1405 retval = sock_create(family, type, protocol, &sock); 1406 if (retval < 0) 1407 goto out; 1408 1409 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1410 if (retval < 0) 1411 goto out_release; 1412 1413out: 1414 /* It may be already another descriptor 8) Not kernel problem. */ 1415 return retval; 1416 1417out_release: 1418 sock_release(sock); 1419 return retval; 1420} 1421 1422/* 1423 * Create a pair of connected sockets. 1424 */ 1425 1426SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1427 int __user *, usockvec) 1428{ 1429 struct socket *sock1, *sock2; 1430 int fd1, fd2, err; 1431 struct file *newfile1, *newfile2; 1432 int flags; 1433 1434 flags = type & ~SOCK_TYPE_MASK; 1435 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1436 return -EINVAL; 1437 type &= SOCK_TYPE_MASK; 1438 1439 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1440 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1441 1442 /* 1443 * Obtain the first socket and check if the underlying protocol 1444 * supports the socketpair call. 1445 */ 1446 1447 err = sock_create(family, type, protocol, &sock1); 1448 if (err < 0) 1449 goto out; 1450 1451 err = sock_create(family, type, protocol, &sock2); 1452 if (err < 0) 1453 goto out_release_1; 1454 1455 err = sock1->ops->socketpair(sock1, sock2); 1456 if (err < 0) 1457 goto out_release_both; 1458 1459 fd1 = get_unused_fd_flags(flags); 1460 if (unlikely(fd1 < 0)) { 1461 err = fd1; 1462 goto out_release_both; 1463 } 1464 fd2 = get_unused_fd_flags(flags); 1465 if (unlikely(fd2 < 0)) { 1466 err = fd2; 1467 put_unused_fd(fd1); 1468 goto out_release_both; 1469 } 1470 1471 newfile1 = sock_alloc_file(sock1, flags, NULL); 1472 if (unlikely(IS_ERR(newfile1))) { 1473 err = PTR_ERR(newfile1); 1474 put_unused_fd(fd1); 1475 put_unused_fd(fd2); 1476 goto out_release_both; 1477 } 1478 1479 newfile2 = sock_alloc_file(sock2, flags, NULL); 1480 if (IS_ERR(newfile2)) { 1481 err = PTR_ERR(newfile2); 1482 fput(newfile1); 1483 put_unused_fd(fd1); 1484 put_unused_fd(fd2); 1485 sock_release(sock2); 1486 goto out; 1487 } 1488 1489 audit_fd_pair(fd1, fd2); 1490 fd_install(fd1, newfile1); 1491 fd_install(fd2, newfile2); 1492 /* fd1 and fd2 may be already another descriptors. 1493 * Not kernel problem. 1494 */ 1495 1496 err = put_user(fd1, &usockvec[0]); 1497 if (!err) 1498 err = put_user(fd2, &usockvec[1]); 1499 if (!err) 1500 return 0; 1501 1502 sys_close(fd2); 1503 sys_close(fd1); 1504 return err; 1505 1506out_release_both: 1507 sock_release(sock2); 1508out_release_1: 1509 sock_release(sock1); 1510out: 1511 return err; 1512} 1513 1514/* 1515 * Bind a name to a socket. Nothing much to do here since it's 1516 * the protocol's responsibility to handle the local address. 1517 * 1518 * We move the socket address to kernel space before we call 1519 * the protocol layer (having also checked the address is ok). 1520 */ 1521 1522SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1523{ 1524 struct socket *sock; 1525 struct sockaddr_storage address; 1526 int err, fput_needed; 1527 1528 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1529 if (sock) { 1530 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1531 if (err >= 0) { 1532 err = security_socket_bind(sock, 1533 (struct sockaddr *)&address, 1534 addrlen); 1535 if (!err) 1536 err = sock->ops->bind(sock, 1537 (struct sockaddr *) 1538 &address, addrlen); 1539 } 1540 fput_light(sock->file, fput_needed); 1541 } 1542 return err; 1543} 1544 1545/* 1546 * Perform a listen. Basically, we allow the protocol to do anything 1547 * necessary for a listen, and if that works, we mark the socket as 1548 * ready for listening. 1549 */ 1550 1551SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1552{ 1553 struct socket *sock; 1554 int err, fput_needed; 1555 int somaxconn; 1556 1557 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1558 if (sock) { 1559 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1560 if ((unsigned int)backlog > somaxconn) 1561 backlog = somaxconn; 1562 1563 err = security_socket_listen(sock, backlog); 1564 if (!err) 1565 err = sock->ops->listen(sock, backlog); 1566 1567 fput_light(sock->file, fput_needed); 1568 } 1569 return err; 1570} 1571 1572/* 1573 * For accept, we attempt to create a new socket, set up the link 1574 * with the client, wake up the client, then return the new 1575 * connected fd. We collect the address of the connector in kernel 1576 * space and move it to user at the very end. This is unclean because 1577 * we open the socket then return an error. 1578 * 1579 * 1003.1g adds the ability to recvmsg() to query connection pending 1580 * status to recvmsg. We need to add that support in a way thats 1581 * clean when we restucture accept also. 1582 */ 1583 1584SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1585 int __user *, upeer_addrlen, int, flags) 1586{ 1587 struct socket *sock, *newsock; 1588 struct file *newfile; 1589 int err, len, newfd, fput_needed; 1590 struct sockaddr_storage address; 1591 1592 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1593 return -EINVAL; 1594 1595 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1596 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1597 1598 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1599 if (!sock) 1600 goto out; 1601 1602 err = -ENFILE; 1603 newsock = sock_alloc(); 1604 if (!newsock) 1605 goto out_put; 1606 1607 newsock->type = sock->type; 1608 newsock->ops = sock->ops; 1609 1610 /* 1611 * We don't need try_module_get here, as the listening socket (sock) 1612 * has the protocol module (sock->ops->owner) held. 1613 */ 1614 __module_get(newsock->ops->owner); 1615 1616 newfd = get_unused_fd_flags(flags); 1617 if (unlikely(newfd < 0)) { 1618 err = newfd; 1619 sock_release(newsock); 1620 goto out_put; 1621 } 1622 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1623 if (unlikely(IS_ERR(newfile))) { 1624 err = PTR_ERR(newfile); 1625 put_unused_fd(newfd); 1626 sock_release(newsock); 1627 goto out_put; 1628 } 1629 1630 err = security_socket_accept(sock, newsock); 1631 if (err) 1632 goto out_fd; 1633 1634 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1635 if (err < 0) 1636 goto out_fd; 1637 1638 if (upeer_sockaddr) { 1639 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1640 &len, 2) < 0) { 1641 err = -ECONNABORTED; 1642 goto out_fd; 1643 } 1644 err = move_addr_to_user(&address, 1645 len, upeer_sockaddr, upeer_addrlen); 1646 if (err < 0) 1647 goto out_fd; 1648 } 1649 1650 /* File flags are not inherited via accept() unlike another OSes. */ 1651 1652 fd_install(newfd, newfile); 1653 err = newfd; 1654 1655out_put: 1656 fput_light(sock->file, fput_needed); 1657out: 1658 return err; 1659out_fd: 1660 fput(newfile); 1661 put_unused_fd(newfd); 1662 goto out_put; 1663} 1664 1665SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1666 int __user *, upeer_addrlen) 1667{ 1668 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1669} 1670 1671/* 1672 * Attempt to connect to a socket with the server address. The address 1673 * is in user space so we verify it is OK and move it to kernel space. 1674 * 1675 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1676 * break bindings 1677 * 1678 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1679 * other SEQPACKET protocols that take time to connect() as it doesn't 1680 * include the -EINPROGRESS status for such sockets. 1681 */ 1682 1683SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1684 int, addrlen) 1685{ 1686 struct socket *sock; 1687 struct sockaddr_storage address; 1688 int err, fput_needed; 1689 1690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1691 if (!sock) 1692 goto out; 1693 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1694 if (err < 0) 1695 goto out_put; 1696 1697 err = 1698 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1699 if (err) 1700 goto out_put; 1701 1702 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1703 sock->file->f_flags); 1704out_put: 1705 fput_light(sock->file, fput_needed); 1706out: 1707 return err; 1708} 1709 1710/* 1711 * Get the local address ('name') of a socket object. Move the obtained 1712 * name to user space. 1713 */ 1714 1715SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1716 int __user *, usockaddr_len) 1717{ 1718 struct socket *sock; 1719 struct sockaddr_storage address; 1720 int len, err, fput_needed; 1721 1722 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1723 if (!sock) 1724 goto out; 1725 1726 err = security_socket_getsockname(sock); 1727 if (err) 1728 goto out_put; 1729 1730 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1731 if (err) 1732 goto out_put; 1733 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1734 1735out_put: 1736 fput_light(sock->file, fput_needed); 1737out: 1738 return err; 1739} 1740 1741/* 1742 * Get the remote address ('name') of a socket object. Move the obtained 1743 * name to user space. 1744 */ 1745 1746SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1747 int __user *, usockaddr_len) 1748{ 1749 struct socket *sock; 1750 struct sockaddr_storage address; 1751 int len, err, fput_needed; 1752 1753 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1754 if (sock != NULL) { 1755 err = security_socket_getpeername(sock); 1756 if (err) { 1757 fput_light(sock->file, fput_needed); 1758 return err; 1759 } 1760 1761 err = 1762 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1763 1); 1764 if (!err) 1765 err = move_addr_to_user(&address, len, usockaddr, 1766 usockaddr_len); 1767 fput_light(sock->file, fput_needed); 1768 } 1769 return err; 1770} 1771 1772/* 1773 * Send a datagram to a given address. We move the address into kernel 1774 * space and check the user space data area is readable before invoking 1775 * the protocol. 1776 */ 1777 1778SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1779 unsigned int, flags, struct sockaddr __user *, addr, 1780 int, addr_len) 1781{ 1782 struct socket *sock; 1783 struct sockaddr_storage address; 1784 int err; 1785 struct msghdr msg; 1786 struct iovec iov; 1787 int fput_needed; 1788 1789 if (len > INT_MAX) 1790 len = INT_MAX; 1791 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1792 if (!sock) 1793 goto out; 1794 1795 iov.iov_base = buff; 1796 iov.iov_len = len; 1797 msg.msg_name = NULL; 1798 msg.msg_iov = &iov; 1799 msg.msg_iovlen = 1; 1800 msg.msg_control = NULL; 1801 msg.msg_controllen = 0; 1802 msg.msg_namelen = 0; 1803 if (addr) { 1804 err = move_addr_to_kernel(addr, addr_len, &address); 1805 if (err < 0) 1806 goto out_put; 1807 msg.msg_name = (struct sockaddr *)&address; 1808 msg.msg_namelen = addr_len; 1809 } 1810 if (sock->file->f_flags & O_NONBLOCK) 1811 flags |= MSG_DONTWAIT; 1812 msg.msg_flags = flags; 1813 err = sock_sendmsg(sock, &msg, len); 1814 1815out_put: 1816 fput_light(sock->file, fput_needed); 1817out: 1818 return err; 1819} 1820 1821/* 1822 * Send a datagram down a socket. 1823 */ 1824 1825SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1826 unsigned int, flags) 1827{ 1828 return sys_sendto(fd, buff, len, flags, NULL, 0); 1829} 1830 1831/* 1832 * Receive a frame from the socket and optionally record the address of the 1833 * sender. We verify the buffers are writable and if needed move the 1834 * sender address from kernel to user space. 1835 */ 1836 1837SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1838 unsigned int, flags, struct sockaddr __user *, addr, 1839 int __user *, addr_len) 1840{ 1841 struct socket *sock; 1842 struct iovec iov; 1843 struct msghdr msg; 1844 struct sockaddr_storage address; 1845 int err, err2; 1846 int fput_needed; 1847 1848 if (size > INT_MAX) 1849 size = INT_MAX; 1850 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1851 if (!sock) 1852 goto out; 1853 1854 msg.msg_control = NULL; 1855 msg.msg_controllen = 0; 1856 msg.msg_iovlen = 1; 1857 msg.msg_iov = &iov; 1858 iov.iov_len = size; 1859 iov.iov_base = ubuf; 1860 /* Save some cycles and don't copy the address if not needed */ 1861 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1862 /* We assume all kernel code knows the size of sockaddr_storage */ 1863 msg.msg_namelen = 0; 1864 if (sock->file->f_flags & O_NONBLOCK) 1865 flags |= MSG_DONTWAIT; 1866 err = sock_recvmsg(sock, &msg, size, flags); 1867 1868 if (err >= 0 && addr != NULL) { 1869 err2 = move_addr_to_user(&address, 1870 msg.msg_namelen, addr, addr_len); 1871 if (err2 < 0) 1872 err = err2; 1873 } 1874 1875 fput_light(sock->file, fput_needed); 1876out: 1877 return err; 1878} 1879 1880/* 1881 * Receive a datagram from a socket. 1882 */ 1883 1884asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1885 unsigned int flags) 1886{ 1887 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1888} 1889 1890/* 1891 * Set a socket option. Because we don't know the option lengths we have 1892 * to pass the user mode parameter for the protocols to sort out. 1893 */ 1894 1895SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1896 char __user *, optval, int, optlen) 1897{ 1898 int err, fput_needed; 1899 struct socket *sock; 1900 1901 if (optlen < 0) 1902 return -EINVAL; 1903 1904 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1905 if (sock != NULL) { 1906 err = security_socket_setsockopt(sock, level, optname); 1907 if (err) 1908 goto out_put; 1909 1910 if (level == SOL_SOCKET) 1911 err = 1912 sock_setsockopt(sock, level, optname, optval, 1913 optlen); 1914 else 1915 err = 1916 sock->ops->setsockopt(sock, level, optname, optval, 1917 optlen); 1918out_put: 1919 fput_light(sock->file, fput_needed); 1920 } 1921 return err; 1922} 1923 1924/* 1925 * Get a socket option. Because we don't know the option lengths we have 1926 * to pass a user mode parameter for the protocols to sort out. 1927 */ 1928 1929SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1930 char __user *, optval, int __user *, optlen) 1931{ 1932 int err, fput_needed; 1933 struct socket *sock; 1934 1935 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1936 if (sock != NULL) { 1937 err = security_socket_getsockopt(sock, level, optname); 1938 if (err) 1939 goto out_put; 1940 1941 if (level == SOL_SOCKET) 1942 err = 1943 sock_getsockopt(sock, level, optname, optval, 1944 optlen); 1945 else 1946 err = 1947 sock->ops->getsockopt(sock, level, optname, optval, 1948 optlen); 1949out_put: 1950 fput_light(sock->file, fput_needed); 1951 } 1952 return err; 1953} 1954 1955/* 1956 * Shutdown a socket. 1957 */ 1958 1959SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1960{ 1961 int err, fput_needed; 1962 struct socket *sock; 1963 1964 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1965 if (sock != NULL) { 1966 err = security_socket_shutdown(sock, how); 1967 if (!err) 1968 err = sock->ops->shutdown(sock, how); 1969 fput_light(sock->file, fput_needed); 1970 } 1971 return err; 1972} 1973 1974/* A couple of helpful macros for getting the address of the 32/64 bit 1975 * fields which are the same type (int / unsigned) on our platforms. 1976 */ 1977#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1978#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1979#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1980 1981struct used_address { 1982 struct sockaddr_storage name; 1983 unsigned int name_len; 1984}; 1985 1986static int copy_msghdr_from_user(struct msghdr *kmsg, 1987 struct msghdr __user *umsg) 1988{ 1989 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1990 return -EFAULT; 1991 1992 if (kmsg->msg_namelen < 0) 1993 return -EINVAL; 1994 1995 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1996 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1997 return 0; 1998} 1999 2000static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 2001 struct msghdr *msg_sys, unsigned int flags, 2002 struct used_address *used_address) 2003{ 2004 struct compat_msghdr __user *msg_compat = 2005 (struct compat_msghdr __user *)msg; 2006 struct sockaddr_storage address; 2007 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2008 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2009 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2010 /* 20 is size of ipv6_pktinfo */ 2011 unsigned char *ctl_buf = ctl; 2012 int err, ctl_len, total_len; 2013 2014 err = -EFAULT; 2015 if (MSG_CMSG_COMPAT & flags) { 2016 if (get_compat_msghdr(msg_sys, msg_compat)) 2017 return -EFAULT; 2018 } else { 2019 err = copy_msghdr_from_user(msg_sys, msg); 2020 if (err) 2021 return err; 2022 } 2023 2024 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2025 err = -EMSGSIZ…
Large files files are truncated, but you can click here to view the full file