/prio/prio.go
https://code.google.com/p/go-priority-queue/ · Go · 169 lines · 97 code · 13 blank · 59 comment · 14 complexity · e5e8d739fdbb4a5ada31f8f381e88ed7 MD5 · raw file
- // Copyright 2012 Stefan Nilsson
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // Package prio provides a priority queue.
- // The queue can hold elements that implement the two methods of prio.Interface.
- package prio
- /*
- A type that implements prio.Interface can be inserted into a priority queue.
- The simplest use case looks like this:
- type myInt int
- func (x myInt) Less(y prio.Interface) bool { return x < y.(myInt) }
- func (x myInt) Index(i int) {}
- To use the Remove method you need to keep track of the index of elements
- in the heap, e.g. like this:
- type myType struct {
- value int
- index int // index in heap
- }
- func (x *myType) Less(y prio.Interface) bool { return x.value < y.(*myType).value }
- func (x *myType) Index(i int) { x.index = i }
- */
- type Interface interface {
- // Less returns whether this element should sort before element x.
- Less(x Interface) bool
- // Index is called by the priority queue when this element is moved to index i.
- Index(i int)
- }
- // Queue represents a priority queue.
- // The zero value for Queue is an empty queue ready to use.
- type Queue struct {
- h []Interface
- }
- // New returns an initialized priority queue with the given elements.
- // A call of the form New(x...) uses the underlying array of x to implement
- // the queue and hence might change the elements of x.
- // The complexity is O(n), where n = len(x).
- func New(x ...Interface) Queue {
- q := Queue{x}
- heapify(q.h)
- return q
- }
- // Push pushes the element x onto the queue.
- // The complexity is O(log(n)), where n = q.Len().
- func (q *Queue) Push(x Interface) {
- n := len(q.h)
- q.h = append(q.h, x)
- up(q.h, n) // x.Index(n) is done by up.
- }
- // Pop removes a minimum element (according to Less) from the queue and returns it.
- // The complexity is O(log(n)), where n = q.Len().
- func (q *Queue) Pop() Interface {
- h := q.h
- n := len(h) - 1
- x := h[0]
- h[0], h[n] = h[n], nil
- h = h[:n]
- if n > 0 {
- down(h, 0) // h[0].Index(0) is done by down.
- }
- q.h = h
- x.Index(-1) // for safety
- return x
- }
- // Peek returns, but does not remove, a minimum element (according to Less) of the queue.
- func (q *Queue) Peek() Interface {
- return q.h[0]
- }
- // Remove removes the element at index i from the queue and returns it.
- // The complexity is O(log(n)), where n = q.Len().
- func (q *Queue) Remove(i int) Interface {
- h := q.h
- n := len(h) - 1
- x := h[i]
- h[i], h[n] = h[n], nil
- h = h[:n]
- if i < n {
- down(h, i) // h[i].Index(i) is done by down.
- up(h, i)
- }
- q.h = h
- x.Index(-1) // for safety
- return x
- }
- // Len returns the number of elements in the queue.
- func (q *Queue) Len() int {
- return len(q.h)
- }
- // Fix reestablishes the heap ordering after the element at index i has changed its value.
- // Changing the value of the element at index i and then calling Fix is equivalent to,
- // but less expensive than, calling Remove(i) followed by a Push of the new value.
- // The complexity is O(log(n)) where n = q.Len().
- func (q *Queue) Fix(i int) {
- up(q.h, i)
- down(q.h, i)
- }
- // Establishes the heap invariant in O(n) time.
- func heapify(h []Interface) {
- n := len(h)
- for i := n - 1; i >= n/2; i-- {
- h[i].Index(i)
- }
- for i := n/2 - 1; i >= 0; i-- { // h[i].Index(i) is done by down.
- down(h, i)
- }
- }
- // Moves element at position i towards top of heap to restore invariant.
- func up(h []Interface, i int) {
- for {
- parent := (i - 1) / 2
- if i == 0 || h[parent].Less(h[i]) {
- h[i].Index(i)
- break
- }
- h[parent], h[i] = h[i], h[parent]
- h[i].Index(i)
- i = parent
- }
- }
- // Moves element at position i towards bottom of heap to restore invariant.
- func down(h []Interface, i int) {
- for {
- n := len(h)
- left := 2*i + 1
- if left >= n || left < 0 { // left < 0 after int overflow
- h[i].Index(i)
- break
- }
- j := left
- if right := left + 1; right < n && h[right].Less(h[left]) {
- j = right
- }
- if h[i].Less(h[j]) {
- h[i].Index(i)
- break
- }
- h[i], h[j] = h[j], h[i]
- h[i].Index(i)
- i = j
- }
- }