PageRenderTime 95ms CodeModel.GetById 17ms app.highlight 69ms RepoModel.GetById 1ms app.codeStats 0ms

/arch/parisc/kernel/firmware.c

https://bitbucket.org/evzijst/gittest
C | 1405 lines | 751 code | 183 blank | 471 comment | 34 complexity | 8d429febaef42350616da2c68dbf67b8 MD5 | raw file
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/system.h>
  71#include <asm/processor.h>	/* for boot_cpu_data */
  72
  73static DEFINE_SPINLOCK(pdc_lock);
  74static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
  75static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
  76
  77#ifdef __LP64__
  78#define WIDE_FIRMWARE 0x1
  79#define NARROW_FIRMWARE 0x2
  80
  81/* Firmware needs to be initially set to narrow to determine the 
  82 * actual firmware width. */
  83int parisc_narrow_firmware = 1;
  84#endif
  85
  86/* on all currently-supported platforms, IODC I/O calls are always
  87 * 32-bit calls, and MEM_PDC calls are always the same width as the OS.
  88 * This means Cxxx boxes can't run wide kernels right now. -PB
  89 *
  90 * CONFIG_PDC_NARROW has been added to allow 64-bit kernels to run on
  91 * systems with 32-bit MEM_PDC calls. This will allow wide kernels to
  92 * run on Cxxx boxes now. -RB
  93 *
  94 * Note that some PAT boxes may have 64-bit IODC I/O...
  95 */
  96
  97#ifdef __LP64__
  98long real64_call(unsigned long function, ...);
  99#endif
 100long real32_call(unsigned long function, ...);
 101
 102#ifdef __LP64__
 103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 105#else
 106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 108#endif
 109
 110
 111/**
 112 * f_extend - Convert PDC addresses to kernel addresses.
 113 * @address: Address returned from PDC.
 114 *
 115 * This function is used to convert PDC addresses into kernel addresses
 116 * when the PDC address size and kernel address size are different.
 117 */
 118static unsigned long f_extend(unsigned long address)
 119{
 120#ifdef __LP64__
 121	if(unlikely(parisc_narrow_firmware)) {
 122		if((address & 0xff000000) == 0xf0000000)
 123			return 0xf0f0f0f000000000UL | (u32)address;
 124
 125		if((address & 0xf0000000) == 0xf0000000)
 126			return 0xffffffff00000000UL | (u32)address;
 127	}
 128#endif
 129	return address;
 130}
 131
 132/**
 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 134 * @address: The return buffer from PDC.
 135 *
 136 * This function is used to convert the return buffer addresses retrieved from PDC
 137 * into kernel addresses when the PDC address size and kernel address size are
 138 * different.
 139 */
 140static void convert_to_wide(unsigned long *addr)
 141{
 142#ifdef __LP64__
 143	int i;
 144	unsigned int *p = (unsigned int *)addr;
 145
 146	if(unlikely(parisc_narrow_firmware)) {
 147		for(i = 31; i >= 0; --i)
 148			addr[i] = p[i];
 149	}
 150#endif
 151}
 152
 153/**
 154 * set_firmware_width - Determine if the firmware is wide or narrow.
 155 * 
 156 * This function must be called before any pdc_* function that uses the convert_to_wide
 157 * function.
 158 */
 159void __init set_firmware_width(void)
 160{
 161#ifdef __LP64__
 162	int retval;
 163
 164        spin_lock_irq(&pdc_lock);
 165	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 166	convert_to_wide(pdc_result);
 167	if(pdc_result[0] != NARROW_FIRMWARE)
 168		parisc_narrow_firmware = 0;
 169        spin_unlock_irq(&pdc_lock);
 170#endif
 171}
 172
 173/**
 174 * pdc_emergency_unlock - Unlock the linux pdc lock
 175 *
 176 * This call unlocks the linux pdc lock in case we need some PDC functions
 177 * (like pdc_add_valid) during kernel stack dump.
 178 */
 179void pdc_emergency_unlock(void)
 180{
 181 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 182        if (spin_is_locked(&pdc_lock))
 183		spin_unlock(&pdc_lock);
 184}
 185
 186
 187/**
 188 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 189 * @address: Address to be verified.
 190 *
 191 * This PDC call attempts to read from the specified address and verifies
 192 * if the address is valid.
 193 * 
 194 * The return value is PDC_OK (0) in case accessing this address is valid.
 195 */
 196int pdc_add_valid(unsigned long address)
 197{
 198        int retval;
 199
 200        spin_lock_irq(&pdc_lock);
 201        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 202        spin_unlock_irq(&pdc_lock);
 203
 204        return retval;
 205}
 206EXPORT_SYMBOL(pdc_add_valid);
 207
 208/**
 209 * pdc_chassis_info - Return chassis information.
 210 * @result: The return buffer.
 211 * @chassis_info: The memory buffer address.
 212 * @len: The size of the memory buffer address.
 213 *
 214 * An HVERSION dependent call for returning the chassis information.
 215 */
 216int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 217{
 218        int retval;
 219
 220        spin_lock_irq(&pdc_lock);
 221        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 222        memcpy(&pdc_result2, led_info, len);
 223        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 224                              __pa(pdc_result), __pa(pdc_result2), len);
 225        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 226        memcpy(led_info, pdc_result2, len);
 227        spin_unlock_irq(&pdc_lock);
 228
 229        return retval;
 230}
 231
 232/**
 233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 234 * @retval: -1 on error, 0 on success. Other value are PDC errors
 235 * 
 236 * Must be correctly formatted or expect system crash
 237 */
 238#ifdef __LP64__
 239int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 240{
 241	int retval = 0;
 242        
 243	if (!is_pdc_pat())
 244		return -1;
 245
 246	spin_lock_irq(&pdc_lock);
 247	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 248	spin_unlock_irq(&pdc_lock);
 249
 250	return retval;
 251}
 252#endif
 253
 254/**
 255 * pdc_chassis_disp - Updates display
 256 * @retval: -1 on error, 0 on success
 257 *
 258 * Works on old PDC only (E class, others?)
 259 */
 260int pdc_chassis_disp(unsigned long disp)
 261{
 262	int retval = 0;
 263
 264	spin_lock_irq(&pdc_lock);
 265	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 266	spin_unlock_irq(&pdc_lock);
 267
 268	return retval;
 269}
 270
 271/**
 272 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 273 * @pdc_coproc_info: Return buffer address.
 274 *
 275 * This PDC call returns the presence and status of all the coprocessors
 276 * attached to the processor.
 277 */
 278int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 279{
 280        int retval;
 281
 282        spin_lock_irq(&pdc_lock);
 283        retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 284        convert_to_wide(pdc_result);
 285        pdc_coproc_info->ccr_functional = pdc_result[0];
 286        pdc_coproc_info->ccr_present = pdc_result[1];
 287        pdc_coproc_info->revision = pdc_result[17];
 288        pdc_coproc_info->model = pdc_result[18];
 289        spin_unlock_irq(&pdc_lock);
 290
 291        return retval;
 292}
 293
 294/**
 295 * pdc_iodc_read - Read data from the modules IODC.
 296 * @actcnt: The actual number of bytes.
 297 * @hpa: The HPA of the module for the iodc read.
 298 * @index: The iodc entry point.
 299 * @iodc_data: A buffer memory for the iodc options.
 300 * @iodc_data_size: Size of the memory buffer.
 301 *
 302 * This PDC call reads from the IODC of the module specified by the hpa
 303 * argument.
 304 */
 305int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 306		  void *iodc_data, unsigned int iodc_data_size)
 307{
 308	int retval;
 309
 310	spin_lock_irq(&pdc_lock);
 311	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 312			      index, __pa(pdc_result2), iodc_data_size);
 313	convert_to_wide(pdc_result);
 314	*actcnt = pdc_result[0];
 315	memcpy(iodc_data, pdc_result2, iodc_data_size);
 316	spin_unlock_irq(&pdc_lock);
 317
 318	return retval;
 319}
 320EXPORT_SYMBOL(pdc_iodc_read);
 321
 322/**
 323 * pdc_system_map_find_mods - Locate unarchitected modules.
 324 * @pdc_mod_info: Return buffer address.
 325 * @mod_path: pointer to dev path structure.
 326 * @mod_index: fixed address module index.
 327 *
 328 * To locate and identify modules which reside at fixed I/O addresses, which
 329 * do not self-identify via architected bus walks.
 330 */
 331int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 332			     struct pdc_module_path *mod_path, long mod_index)
 333{
 334	int retval;
 335
 336	spin_lock_irq(&pdc_lock);
 337	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 338			      __pa(pdc_result2), mod_index);
 339	convert_to_wide(pdc_result);
 340	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 341	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 342	spin_unlock_irq(&pdc_lock);
 343
 344	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 345	return retval;
 346}
 347
 348/**
 349 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 350 * @pdc_addr_info: Return buffer address.
 351 * @mod_index: Fixed address module index.
 352 * @addr_index: Address range index.
 353 * 
 354 * Retrieve additional information about subsequent address ranges for modules
 355 * with multiple address ranges.  
 356 */
 357int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 358			      long mod_index, long addr_index)
 359{
 360	int retval;
 361
 362	spin_lock_irq(&pdc_lock);
 363	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 364			      mod_index, addr_index);
 365	convert_to_wide(pdc_result);
 366	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 367	spin_unlock_irq(&pdc_lock);
 368
 369	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 370	return retval;
 371}
 372
 373/**
 374 * pdc_model_info - Return model information about the processor.
 375 * @model: The return buffer.
 376 *
 377 * Returns the version numbers, identifiers, and capabilities from the processor module.
 378 */
 379int pdc_model_info(struct pdc_model *model) 
 380{
 381	int retval;
 382
 383	spin_lock_irq(&pdc_lock);
 384	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 385	convert_to_wide(pdc_result);
 386	memcpy(model, pdc_result, sizeof(*model));
 387	spin_unlock_irq(&pdc_lock);
 388
 389	return retval;
 390}
 391
 392/**
 393 * pdc_model_sysmodel - Get the system model name.
 394 * @name: A char array of at least 81 characters.
 395 *
 396 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L)
 397 */
 398int pdc_model_sysmodel(char *name)
 399{
 400        int retval;
 401
 402        spin_lock_irq(&pdc_lock);
 403        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 404                              OS_ID_HPUX, __pa(name));
 405        convert_to_wide(pdc_result);
 406
 407        if (retval == PDC_OK) {
 408                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 409        } else {
 410                name[0] = 0;
 411        }
 412        spin_unlock_irq(&pdc_lock);
 413
 414        return retval;
 415}
 416
 417/**
 418 * pdc_model_versions - Identify the version number of each processor.
 419 * @cpu_id: The return buffer.
 420 * @id: The id of the processor to check.
 421 *
 422 * Returns the version number for each processor component.
 423 *
 424 * This comment was here before, but I do not know what it means :( -RB
 425 * id: 0 = cpu revision, 1 = boot-rom-version
 426 */
 427int pdc_model_versions(unsigned long *versions, int id)
 428{
 429        int retval;
 430
 431        spin_lock_irq(&pdc_lock);
 432        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 433        convert_to_wide(pdc_result);
 434        *versions = pdc_result[0];
 435        spin_unlock_irq(&pdc_lock);
 436
 437        return retval;
 438}
 439
 440/**
 441 * pdc_model_cpuid - Returns the CPU_ID.
 442 * @cpu_id: The return buffer.
 443 *
 444 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 445 * the processor module.
 446 */
 447int pdc_model_cpuid(unsigned long *cpu_id)
 448{
 449        int retval;
 450
 451        spin_lock_irq(&pdc_lock);
 452        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 453        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 454        convert_to_wide(pdc_result);
 455        *cpu_id = pdc_result[0];
 456        spin_unlock_irq(&pdc_lock);
 457
 458        return retval;
 459}
 460
 461/**
 462 * pdc_model_capabilities - Returns the platform capabilities.
 463 * @capabilities: The return buffer.
 464 *
 465 * Returns information about platform support for 32- and/or 64-bit
 466 * OSes, IO-PDIR coherency, and virtual aliasing.
 467 */
 468int pdc_model_capabilities(unsigned long *capabilities)
 469{
 470        int retval;
 471
 472        spin_lock_irq(&pdc_lock);
 473        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 474        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 475        convert_to_wide(pdc_result);
 476        *capabilities = pdc_result[0];
 477        spin_unlock_irq(&pdc_lock);
 478
 479        return retval;
 480}
 481
 482/**
 483 * pdc_cache_info - Return cache and TLB information.
 484 * @cache_info: The return buffer.
 485 *
 486 * Returns information about the processor's cache and TLB.
 487 */
 488int pdc_cache_info(struct pdc_cache_info *cache_info)
 489{
 490        int retval;
 491
 492        spin_lock_irq(&pdc_lock);
 493        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 494        convert_to_wide(pdc_result);
 495        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 496        spin_unlock_irq(&pdc_lock);
 497
 498        return retval;
 499}
 500
 501#ifndef CONFIG_PA20
 502/**
 503 * pdc_btlb_info - Return block TLB information.
 504 * @btlb: The return buffer.
 505 *
 506 * Returns information about the hardware Block TLB.
 507 */
 508int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 509{
 510        int retval;
 511
 512        spin_lock_irq(&pdc_lock);
 513        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 514        memcpy(btlb, pdc_result, sizeof(*btlb));
 515        spin_unlock_irq(&pdc_lock);
 516
 517        if(retval < 0) {
 518                btlb->max_size = 0;
 519        }
 520        return retval;
 521}
 522
 523/**
 524 * pdc_mem_map_hpa - Find fixed module information.  
 525 * @address: The return buffer
 526 * @mod_path: pointer to dev path structure.
 527 *
 528 * This call was developed for S700 workstations to allow the kernel to find
 529 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 530 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 531 * call.
 532 *
 533 * This call is supported by all existing S700 workstations (up to  Gecko).
 534 */
 535int pdc_mem_map_hpa(struct pdc_memory_map *address,
 536		struct pdc_module_path *mod_path)
 537{
 538        int retval;
 539
 540        spin_lock_irq(&pdc_lock);
 541        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 542        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 543				__pa(pdc_result2));
 544        memcpy(address, pdc_result, sizeof(*address));
 545        spin_unlock_irq(&pdc_lock);
 546
 547        return retval;
 548}
 549#endif	/* !CONFIG_PA20 */
 550
 551/**
 552 * pdc_lan_station_id - Get the LAN address.
 553 * @lan_addr: The return buffer.
 554 * @hpa: The network device HPA.
 555 *
 556 * Get the LAN station address when it is not directly available from the LAN hardware.
 557 */
 558int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 559{
 560	int retval;
 561
 562	spin_lock_irq(&pdc_lock);
 563	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 564			__pa(pdc_result), hpa);
 565	if (retval < 0) {
 566		/* FIXME: else read MAC from NVRAM */
 567		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 568	} else {
 569		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 570	}
 571	spin_unlock_irq(&pdc_lock);
 572
 573	return retval;
 574}
 575EXPORT_SYMBOL(pdc_lan_station_id);
 576
 577/**
 578 * pdc_stable_read - Read data from Stable Storage.
 579 * @staddr: Stable Storage address to access.
 580 * @memaddr: The memory address where Stable Storage data shall be copied.
 581 * @count: number of bytes to transfert. count is multiple of 4.
 582 *
 583 * This PDC call reads from the Stable Storage address supplied in staddr
 584 * and copies count bytes to the memory address memaddr.
 585 * The call will fail if staddr+count > PDC_STABLE size.
 586 */
 587int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 588{
 589       int retval;
 590
 591       spin_lock_irq(&pdc_lock);
 592       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 593               __pa(pdc_result), count);
 594       convert_to_wide(pdc_result);
 595       memcpy(memaddr, pdc_result, count);
 596       spin_unlock_irq(&pdc_lock);
 597
 598       return retval;
 599}
 600EXPORT_SYMBOL(pdc_stable_read);
 601
 602/**
 603 * pdc_stable_write - Write data to Stable Storage.
 604 * @staddr: Stable Storage address to access.
 605 * @memaddr: The memory address where Stable Storage data shall be read from.
 606 * @count: number of bytes to transfert. count is multiple of 4.
 607 *
 608 * This PDC call reads count bytes from the supplied memaddr address,
 609 * and copies count bytes to the Stable Storage address staddr.
 610 * The call will fail if staddr+count > PDC_STABLE size.
 611 */
 612int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 613{
 614       int retval;
 615
 616       spin_lock_irq(&pdc_lock);
 617       memcpy(pdc_result, memaddr, count);
 618       convert_to_wide(pdc_result);
 619       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 620               __pa(pdc_result), count);
 621       spin_unlock_irq(&pdc_lock);
 622
 623       return retval;
 624}
 625EXPORT_SYMBOL(pdc_stable_write);
 626
 627/**
 628 * pdc_stable_get_size - Get Stable Storage size in bytes.
 629 * @size: pointer where the size will be stored.
 630 *
 631 * This PDC call returns the number of bytes in the processor's Stable
 632 * Storage, which is the number of contiguous bytes implemented in Stable
 633 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 634 * which is a multiple of four.
 635 */
 636int pdc_stable_get_size(unsigned long *size)
 637{
 638       int retval;
 639
 640       spin_lock_irq(&pdc_lock);
 641       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 642       *size = pdc_result[0];
 643       spin_unlock_irq(&pdc_lock);
 644
 645       return retval;
 646}
 647EXPORT_SYMBOL(pdc_stable_get_size);
 648
 649/**
 650 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 651 *
 652 * This PDC call is meant to be used to check the integrity of the current
 653 * contents of Stable Storage.
 654 */
 655int pdc_stable_verify_contents(void)
 656{
 657       int retval;
 658
 659       spin_lock_irq(&pdc_lock);
 660       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 661       spin_unlock_irq(&pdc_lock);
 662
 663       return retval;
 664}
 665EXPORT_SYMBOL(pdc_stable_verify_contents);
 666
 667/**
 668 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 669 * the validity indicator.
 670 *
 671 * This PDC call will erase all contents of Stable Storage. Use with care!
 672 */
 673int pdc_stable_initialize(void)
 674{
 675       int retval;
 676
 677       spin_lock_irq(&pdc_lock);
 678       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 679       spin_unlock_irq(&pdc_lock);
 680
 681       return retval;
 682}
 683EXPORT_SYMBOL(pdc_stable_initialize);
 684
 685/**
 686 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 687 * @hwpath: fully bc.mod style path to the device.
 688 * @initiator: the array to return the result into
 689 *
 690 * Get the SCSI operational parameters from PDC.
 691 * Needed since HPUX never used BIOS or symbios card NVRAM.
 692 * Most ncr/sym cards won't have an entry and just use whatever
 693 * capabilities of the card are (eg Ultra, LVD). But there are
 694 * several cases where it's useful:
 695 *    o set SCSI id for Multi-initiator clusters,
 696 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 697 *    o bus width exported is less than what the interface chip supports.
 698 */
 699int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 700{
 701	int retval;
 702
 703	spin_lock_irq(&pdc_lock);
 704
 705/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 706#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 707	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 708
 709	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 710			      __pa(pdc_result), __pa(hwpath));
 711	if (retval < PDC_OK)
 712		goto out;
 713
 714	if (pdc_result[0] < 16) {
 715		initiator->host_id = pdc_result[0];
 716	} else {
 717		initiator->host_id = -1;
 718	}
 719
 720	/*
 721	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 722	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 723	 */
 724	switch (pdc_result[1]) {
 725		case  1: initiator->factor = 50; break;
 726		case  2: initiator->factor = 25; break;
 727		case  5: initiator->factor = 12; break;
 728		case 25: initiator->factor = 10; break;
 729		case 20: initiator->factor = 12; break;
 730		case 40: initiator->factor = 10; break;
 731		default: initiator->factor = -1; break;
 732	}
 733
 734	if (IS_SPROCKETS()) {
 735		initiator->width = pdc_result[4];
 736		initiator->mode = pdc_result[5];
 737	} else {
 738		initiator->width = -1;
 739		initiator->mode = -1;
 740	}
 741
 742 out:
 743	spin_unlock_irq(&pdc_lock);
 744	return (retval >= PDC_OK);
 745}
 746EXPORT_SYMBOL(pdc_get_initiator);
 747
 748
 749/**
 750 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 751 * @num_entries: The return value.
 752 * @hpa: The HPA for the device.
 753 *
 754 * This PDC function returns the number of entries in the specified cell's
 755 * interrupt table.
 756 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 757 */ 
 758int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 759{
 760	int retval;
 761
 762	spin_lock_irq(&pdc_lock);
 763	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 764			      __pa(pdc_result), hpa);
 765	convert_to_wide(pdc_result);
 766	*num_entries = pdc_result[0];
 767	spin_unlock_irq(&pdc_lock);
 768
 769	return retval;
 770}
 771
 772/** 
 773 * pdc_pci_irt - Get the PCI interrupt routing table.
 774 * @num_entries: The number of entries in the table.
 775 * @hpa: The Hard Physical Address of the device.
 776 * @tbl: 
 777 *
 778 * Get the PCI interrupt routing table for the device at the given HPA.
 779 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 780 */
 781int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 782{
 783	int retval;
 784
 785	BUG_ON((unsigned long)tbl & 0x7);
 786
 787	spin_lock_irq(&pdc_lock);
 788	pdc_result[0] = num_entries;
 789	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 790			      __pa(pdc_result), hpa, __pa(tbl));
 791	spin_unlock_irq(&pdc_lock);
 792
 793	return retval;
 794}
 795
 796
 797#if 0	/* UNTEST CODE - left here in case someone needs it */
 798
 799/** 
 800 * pdc_pci_config_read - read PCI config space.
 801 * @hpa		token from PDC to indicate which PCI device
 802 * @pci_addr	configuration space address to read from
 803 *
 804 * Read PCI Configuration space *before* linux PCI subsystem is running.
 805 */
 806unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 807{
 808	int retval;
 809	spin_lock_irq(&pdc_lock);
 810	pdc_result[0] = 0;
 811	pdc_result[1] = 0;
 812	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 813			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 814	spin_unlock_irq(&pdc_lock);
 815	return retval ? ~0 : (unsigned int) pdc_result[0];
 816}
 817
 818
 819/** 
 820 * pdc_pci_config_write - read PCI config space.
 821 * @hpa		token from PDC to indicate which PCI device
 822 * @pci_addr	configuration space address to write
 823 * @val		value we want in the 32-bit register
 824 *
 825 * Write PCI Configuration space *before* linux PCI subsystem is running.
 826 */
 827void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 828{
 829	int retval;
 830	spin_lock_irq(&pdc_lock);
 831	pdc_result[0] = 0;
 832	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 833			      __pa(pdc_result), hpa,
 834			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 835	spin_unlock_irq(&pdc_lock);
 836	return retval;
 837}
 838#endif /* UNTESTED CODE */
 839
 840/**
 841 * pdc_tod_read - Read the Time-Of-Day clock.
 842 * @tod: The return buffer:
 843 *
 844 * Read the Time-Of-Day clock
 845 */
 846int pdc_tod_read(struct pdc_tod *tod)
 847{
 848        int retval;
 849
 850        spin_lock_irq(&pdc_lock);
 851        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 852        convert_to_wide(pdc_result);
 853        memcpy(tod, pdc_result, sizeof(*tod));
 854        spin_unlock_irq(&pdc_lock);
 855
 856        return retval;
 857}
 858EXPORT_SYMBOL(pdc_tod_read);
 859
 860/**
 861 * pdc_tod_set - Set the Time-Of-Day clock.
 862 * @sec: The number of seconds since epoch.
 863 * @usec: The number of micro seconds.
 864 *
 865 * Set the Time-Of-Day clock.
 866 */ 
 867int pdc_tod_set(unsigned long sec, unsigned long usec)
 868{
 869        int retval;
 870
 871        spin_lock_irq(&pdc_lock);
 872        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 873        spin_unlock_irq(&pdc_lock);
 874
 875        return retval;
 876}
 877EXPORT_SYMBOL(pdc_tod_set);
 878
 879#ifdef __LP64__
 880int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 881		struct pdc_memory_table *tbl, unsigned long entries)
 882{
 883	int retval;
 884
 885	spin_lock_irq(&pdc_lock);
 886	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 887	convert_to_wide(pdc_result);
 888	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 889	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 890	spin_unlock_irq(&pdc_lock);
 891
 892	return retval;
 893}
 894#endif /* __LP64__ */
 895
 896/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 897 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 898 * it later. :)
 899 */
 900int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
 901{
 902        int retval;
 903
 904        spin_lock_irq(&pdc_lock);
 905        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
 906                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
 907        spin_unlock_irq(&pdc_lock);
 908
 909        return retval;
 910}
 911
 912/*
 913 * pdc_do_reset - Reset the system.
 914 *
 915 * Reset the system.
 916 */
 917int pdc_do_reset(void)
 918{
 919        int retval;
 920
 921        spin_lock_irq(&pdc_lock);
 922        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
 923        spin_unlock_irq(&pdc_lock);
 924
 925        return retval;
 926}
 927
 928/*
 929 * pdc_soft_power_info - Enable soft power switch.
 930 * @power_reg: address of soft power register
 931 *
 932 * Return the absolute address of the soft power switch register
 933 */
 934int __init pdc_soft_power_info(unsigned long *power_reg)
 935{
 936	int retval;
 937
 938	*power_reg = (unsigned long) (-1);
 939	
 940	spin_lock_irq(&pdc_lock);
 941	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
 942	if (retval == PDC_OK) {
 943                convert_to_wide(pdc_result);
 944                *power_reg = f_extend(pdc_result[0]);
 945	}
 946	spin_unlock_irq(&pdc_lock);
 947
 948	return retval;
 949}
 950
 951/*
 952 * pdc_soft_power_button - Control the soft power button behaviour
 953 * @sw_control: 0 for hardware control, 1 for software control 
 954 *
 955 *
 956 * This PDC function places the soft power button under software or
 957 * hardware control.
 958 * Under software control the OS may control to when to allow to shut 
 959 * down the system. Under hardware control pressing the power button 
 960 * powers off the system immediately.
 961 */
 962int pdc_soft_power_button(int sw_control)
 963{
 964	int retval;
 965	spin_lock_irq(&pdc_lock);
 966	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
 967	spin_unlock_irq(&pdc_lock);
 968	return retval;
 969}
 970
 971/*
 972 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
 973 * Primarily a problem on T600 (which parisc-linux doesn't support) but
 974 * who knows what other platform firmware might do with this OS "hook".
 975 */
 976void pdc_io_reset(void)
 977{
 978	spin_lock_irq(&pdc_lock);  
 979	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
 980	spin_unlock_irq(&pdc_lock);
 981}
 982
 983/*
 984 * pdc_io_reset_devices - Hack to Stop USB controller
 985 *
 986 * If PDC used the usb controller, the usb controller
 987 * is still running and will crash the machines during iommu 
 988 * setup, because of still running DMA. This PDC call
 989 * stops the USB controller.
 990 * Normally called after calling pdc_io_reset().
 991 */
 992void pdc_io_reset_devices(void)
 993{
 994	spin_lock_irq(&pdc_lock);  
 995	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
 996	spin_unlock_irq(&pdc_lock);
 997}
 998
 999
1000/**
1001 * pdc_iodc_putc - Console character print using IODC.
1002 * @c: the character to output.
1003 *
1004 * Note that only these special chars are architected for console IODC io:
1005 * BEL, BS, CR, and LF. Others are passed through.
1006 * Since the HP console requires CR+LF to perform a 'newline', we translate
1007 * "\n" to "\r\n".
1008 */
1009void pdc_iodc_putc(unsigned char c)
1010{
1011        /* XXX Should we spinlock posx usage */
1012        static int posx;        /* for simple TAB-Simulation... */
1013        static int __attribute__((aligned(8)))   iodc_retbuf[32];
1014        static char __attribute__((aligned(64))) iodc_dbuf[4096];
1015        unsigned int n;
1016	unsigned int flags;
1017
1018        switch (c) {
1019        case '\n':
1020                iodc_dbuf[0] = '\r';
1021                iodc_dbuf[1] = '\n';
1022                n = 2;
1023                posx = 0;
1024                break;
1025        case '\t':
1026                pdc_iodc_putc(' ');
1027                while (posx & 7)        /* expand TAB */
1028                        pdc_iodc_putc(' ');
1029                return;         /* return since IODC can't handle this */
1030        case '\b':
1031                posx-=2;                /* BS */
1032        default:
1033                iodc_dbuf[0] = c;
1034                n = 1;
1035                posx++;
1036                break;
1037        }
1038
1039        spin_lock_irqsave(&pdc_lock, flags);
1040        real32_call(PAGE0->mem_cons.iodc_io,
1041                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1042                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1043                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1044        spin_unlock_irqrestore(&pdc_lock, flags);
1045}
1046
1047/**
1048 * pdc_iodc_outc - Console character print using IODC (without conversions).
1049 * @c: the character to output.
1050 *
1051 * Write the character directly to the IODC console.
1052 */
1053void pdc_iodc_outc(unsigned char c)
1054{
1055	unsigned int n, flags;
1056
1057	/* fill buffer with one caracter and print it */
1058        static int __attribute__((aligned(8)))   iodc_retbuf[32];
1059        static char __attribute__((aligned(64))) iodc_dbuf[4096];
1060
1061	n = 1;
1062	iodc_dbuf[0] = c;
1063
1064	spin_lock_irqsave(&pdc_lock, flags);
1065	real32_call(PAGE0->mem_cons.iodc_io,
1066		    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1067		    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1068		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1069	spin_unlock_irqrestore(&pdc_lock, flags);
1070}
1071
1072/**
1073 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1074 *
1075 * Read a character (non-blocking) from the PDC console, returns -1 if
1076 * key is not present.
1077 */
1078int pdc_iodc_getc(void)
1079{
1080	unsigned int flags;
1081        static int __attribute__((aligned(8)))   iodc_retbuf[32];
1082        static char __attribute__((aligned(64))) iodc_dbuf[4096];
1083	int ch;
1084	int status;
1085
1086	/* Bail if no console input device. */
1087	if (!PAGE0->mem_kbd.iodc_io)
1088		return 0;
1089	
1090	/* wait for a keyboard (rs232)-input */
1091	spin_lock_irqsave(&pdc_lock, flags);
1092	real32_call(PAGE0->mem_kbd.iodc_io,
1093		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1094		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1095		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1096
1097	ch = *iodc_dbuf;
1098	status = *iodc_retbuf;
1099	spin_unlock_irqrestore(&pdc_lock, flags);
1100
1101	if (status == 0)
1102	    return -1;
1103	
1104	return ch;
1105}
1106
1107int pdc_sti_call(unsigned long func, unsigned long flags,
1108                 unsigned long inptr, unsigned long outputr,
1109                 unsigned long glob_cfg)
1110{
1111        int retval;
1112
1113        spin_lock_irq(&pdc_lock);  
1114        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1115        spin_unlock_irq(&pdc_lock);
1116
1117        return retval;
1118}
1119EXPORT_SYMBOL(pdc_sti_call);
1120
1121#ifdef __LP64__
1122/**
1123 * pdc_pat_cell_get_number - Returns the cell number.
1124 * @cell_info: The return buffer.
1125 *
1126 * This PDC call returns the cell number of the cell from which the call
1127 * is made.
1128 */
1129int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1130{
1131	int retval;
1132
1133	spin_lock_irq(&pdc_lock);
1134	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1135	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1136	spin_unlock_irq(&pdc_lock);
1137
1138	return retval;
1139}
1140
1141/**
1142 * pdc_pat_cell_module - Retrieve the cell's module information.
1143 * @actcnt: The number of bytes written to mem_addr.
1144 * @ploc: The physical location.
1145 * @mod: The module index.
1146 * @view_type: The view of the address type.
1147 * @mem_addr: The return buffer.
1148 *
1149 * This PDC call returns information about each module attached to the cell
1150 * at the specified location.
1151 */
1152int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1153			unsigned long view_type, void *mem_addr)
1154{
1155	int retval;
1156	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1157
1158	spin_lock_irq(&pdc_lock);
1159	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1160			      ploc, mod, view_type, __pa(&result));
1161	if(!retval) {
1162		*actcnt = pdc_result[0];
1163		memcpy(mem_addr, &result, *actcnt);
1164	}
1165	spin_unlock_irq(&pdc_lock);
1166
1167	return retval;
1168}
1169
1170/**
1171 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1172 * @cpu_info: The return buffer.
1173 * @hpa: The Hard Physical Address of the CPU.
1174 *
1175 * Retrieve the cpu number for the cpu at the specified HPA.
1176 */
1177int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1178{
1179	int retval;
1180
1181	spin_lock_irq(&pdc_lock);
1182	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1183			      __pa(&pdc_result), hpa);
1184	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1185	spin_unlock_irq(&pdc_lock);
1186
1187	return retval;
1188}
1189
1190/**
1191 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1192 * @num_entries: The return value.
1193 * @cell_num: The target cell.
1194 *
1195 * This PDC function returns the number of entries in the specified cell's
1196 * interrupt table.
1197 */
1198int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1199{
1200	int retval;
1201
1202	spin_lock_irq(&pdc_lock);
1203	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1204			      __pa(pdc_result), cell_num);
1205	*num_entries = pdc_result[0];
1206	spin_unlock_irq(&pdc_lock);
1207
1208	return retval;
1209}
1210
1211/**
1212 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1213 * @r_addr: The return buffer.
1214 * @cell_num: The target cell.
1215 *
1216 * This PDC function returns the actual interrupt table for the specified cell.
1217 */
1218int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1219{
1220	int retval;
1221
1222	spin_lock_irq(&pdc_lock);
1223	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1224			      __pa(r_addr), cell_num);
1225	spin_unlock_irq(&pdc_lock);
1226
1227	return retval;
1228}
1229
1230/**
1231 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1232 * @actlen: The return buffer.
1233 * @mem_addr: Pointer to the memory buffer.
1234 * @count: The number of bytes to read from the buffer.
1235 * @offset: The offset with respect to the beginning of the buffer.
1236 *
1237 */
1238int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1239			    unsigned long count, unsigned long offset)
1240{
1241	int retval;
1242
1243	spin_lock_irq(&pdc_lock);
1244	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1245			      __pa(pdc_result2), count, offset);
1246	*actual_len = pdc_result[0];
1247	memcpy(mem_addr, pdc_result2, *actual_len);
1248	spin_unlock_irq(&pdc_lock);
1249
1250	return retval;
1251}
1252
1253/**
1254 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1255 * @pci_addr: PCI configuration space address for which the read request is being made.
1256 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1257 * @mem_addr: Pointer to return memory buffer.
1258 *
1259 */
1260int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1261{
1262	int retval;
1263	spin_lock_irq(&pdc_lock);
1264	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1265					__pa(pdc_result), pci_addr, pci_size);
1266	switch(pci_size) {
1267		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1268		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1269		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1270	}
1271	spin_unlock_irq(&pdc_lock);
1272
1273	return retval;
1274}
1275
1276/**
1277 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1278 * @pci_addr: PCI configuration space address for which the write  request is being made.
1279 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1280 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1281 *         written to PCI Config space.
1282 *
1283 */
1284int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1285{
1286	int retval;
1287
1288	spin_lock_irq(&pdc_lock);
1289	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1290				pci_addr, pci_size, val);
1291	spin_unlock_irq(&pdc_lock);
1292
1293	return retval;
1294}
1295#endif /* __LP64__ */
1296
1297
1298/***************** 32-bit real-mode calls ***********/
1299/* The struct below is used
1300 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1301 * real32_call_asm() then uses this stack in narrow real mode
1302 */
1303
1304struct narrow_stack {
1305	/* use int, not long which is 64 bits */
1306	unsigned int arg13;
1307	unsigned int arg12;
1308	unsigned int arg11;
1309	unsigned int arg10;
1310	unsigned int arg9;
1311	unsigned int arg8;
1312	unsigned int arg7;
1313	unsigned int arg6;
1314	unsigned int arg5;
1315	unsigned int arg4;
1316	unsigned int arg3;
1317	unsigned int arg2;
1318	unsigned int arg1;
1319	unsigned int arg0;
1320	unsigned int frame_marker[8];
1321	unsigned int sp;
1322	/* in reality, there's nearly 8k of stack after this */
1323};
1324
1325long real32_call(unsigned long fn, ...)
1326{
1327	va_list args;
1328	extern struct narrow_stack real_stack;
1329	extern unsigned long real32_call_asm(unsigned int *,
1330					     unsigned int *, 
1331					     unsigned int);
1332	
1333	va_start(args, fn);
1334	real_stack.arg0 = va_arg(args, unsigned int);
1335	real_stack.arg1 = va_arg(args, unsigned int);
1336	real_stack.arg2 = va_arg(args, unsigned int);
1337	real_stack.arg3 = va_arg(args, unsigned int);
1338	real_stack.arg4 = va_arg(args, unsigned int);
1339	real_stack.arg5 = va_arg(args, unsigned int);
1340	real_stack.arg6 = va_arg(args, unsigned int);
1341	real_stack.arg7 = va_arg(args, unsigned int);
1342	real_stack.arg8 = va_arg(args, unsigned int);
1343	real_stack.arg9 = va_arg(args, unsigned int);
1344	real_stack.arg10 = va_arg(args, unsigned int);
1345	real_stack.arg11 = va_arg(args, unsigned int);
1346	real_stack.arg12 = va_arg(args, unsigned int);
1347	real_stack.arg13 = va_arg(args, unsigned int);
1348	va_end(args);
1349	
1350	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1351}
1352
1353#ifdef __LP64__
1354/***************** 64-bit real-mode calls ***********/
1355
1356struct wide_stack {
1357	unsigned long arg0;
1358	unsigned long arg1;
1359	unsigned long arg2;
1360	unsigned long arg3;
1361	unsigned long arg4;
1362	unsigned long arg5;
1363	unsigned long arg6;
1364	unsigned long arg7;
1365	unsigned long arg8;
1366	unsigned long arg9;
1367	unsigned long arg10;
1368	unsigned long arg11;
1369	unsigned long arg12;
1370	unsigned long arg13;
1371	unsigned long frame_marker[2];	/* rp, previous sp */
1372	unsigned long sp;
1373	/* in reality, there's nearly 8k of stack after this */
1374};
1375
1376long real64_call(unsigned long fn, ...)
1377{
1378	va_list args;
1379	extern struct wide_stack real64_stack;
1380	extern unsigned long real64_call_asm(unsigned long *,
1381					     unsigned long *, 
1382					     unsigned long);
1383    
1384	va_start(args, fn);
1385	real64_stack.arg0 = va_arg(args, unsigned long);
1386	real64_stack.arg1 = va_arg(args, unsigned long);
1387	real64_stack.arg2 = va_arg(args, unsigned long);
1388	real64_stack.arg3 = va_arg(args, unsigned long);
1389	real64_stack.arg4 = va_arg(args, unsigned long);
1390	real64_stack.arg5 = va_arg(args, unsigned long);
1391	real64_stack.arg6 = va_arg(args, unsigned long);
1392	real64_stack.arg7 = va_arg(args, unsigned long);
1393	real64_stack.arg8 = va_arg(args, unsigned long);
1394	real64_stack.arg9 = va_arg(args, unsigned long);
1395	real64_stack.arg10 = va_arg(args, unsigned long);
1396	real64_stack.arg11 = va_arg(args, unsigned long);
1397	real64_stack.arg12 = va_arg(args, unsigned long);
1398	real64_stack.arg13 = va_arg(args, unsigned long);
1399	va_end(args);
1400	
1401	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1402}
1403
1404#endif /* __LP64__ */
1405