PageRenderTime 19ms CodeModel.GetById 2ms app.highlight 13ms RepoModel.GetById 2ms app.codeStats 0ms

/arch/arm/mm/fault-armv.c

https://bitbucket.org/evzijst/gittest
C | 223 lines | 141 code | 26 blank | 56 comment | 25 complexity | b824190aeb7e7e0e1e487d141c9e7db6 MD5 | raw file
  1/*
  2 *  linux/arch/arm/mm/fault-armv.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2002 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/sched.h>
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/bitops.h>
 16#include <linux/vmalloc.h>
 17#include <linux/init.h>
 18#include <linux/pagemap.h>
 19
 20#include <asm/cacheflush.h>
 21#include <asm/pgtable.h>
 22#include <asm/tlbflush.h>
 23
 24static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
 25
 26/*
 27 * We take the easy way out of this problem - we make the
 28 * PTE uncacheable.  However, we leave the write buffer on.
 29 */
 30static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
 31{
 32	pgd_t *pgd;
 33	pmd_t *pmd;
 34	pte_t *pte, entry;
 35	int ret = 0;
 36
 37	pgd = pgd_offset(vma->vm_mm, address);
 38	if (pgd_none(*pgd))
 39		goto no_pgd;
 40	if (pgd_bad(*pgd))
 41		goto bad_pgd;
 42
 43	pmd = pmd_offset(pgd, address);
 44	if (pmd_none(*pmd))
 45		goto no_pmd;
 46	if (pmd_bad(*pmd))
 47		goto bad_pmd;
 48
 49	pte = pte_offset_map(pmd, address);
 50	entry = *pte;
 51
 52	/*
 53	 * If this page isn't present, or is already setup to
 54	 * fault (ie, is old), we can safely ignore any issues.
 55	 */
 56	if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
 57		flush_cache_page(vma, address, pte_pfn(entry));
 58		pte_val(entry) &= ~shared_pte_mask;
 59		set_pte(pte, entry);
 60		flush_tlb_page(vma, address);
 61		ret = 1;
 62	}
 63	pte_unmap(pte);
 64	return ret;
 65
 66bad_pgd:
 67	pgd_ERROR(*pgd);
 68	pgd_clear(pgd);
 69no_pgd:
 70	return 0;
 71
 72bad_pmd:
 73	pmd_ERROR(*pmd);
 74	pmd_clear(pmd);
 75no_pmd:
 76	return 0;
 77}
 78
 79static void
 80make_coherent(struct vm_area_struct *vma, unsigned long addr, struct page *page, int dirty)
 81{
 82	struct address_space *mapping = page_mapping(page);
 83	struct mm_struct *mm = vma->vm_mm;
 84	struct vm_area_struct *mpnt;
 85	struct prio_tree_iter iter;
 86	unsigned long offset;
 87	pgoff_t pgoff;
 88	int aliases = 0;
 89
 90	if (!mapping)
 91		return;
 92
 93	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
 94
 95	/*
 96	 * If we have any shared mappings that are in the same mm
 97	 * space, then we need to handle them specially to maintain
 98	 * cache coherency.
 99	 */
100	flush_dcache_mmap_lock(mapping);
101	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
102		/*
103		 * If this VMA is not in our MM, we can ignore it.
104		 * Note that we intentionally mask out the VMA
105		 * that we are fixing up.
106		 */
107		if (mpnt->vm_mm != mm || mpnt == vma)
108			continue;
109		if (!(mpnt->vm_flags & VM_MAYSHARE))
110			continue;
111		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
112		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
113	}
114	flush_dcache_mmap_unlock(mapping);
115	if (aliases)
116		adjust_pte(vma, addr);
117	else
118		flush_cache_page(vma, addr, page_to_pfn(page));
119}
120
121/*
122 * Take care of architecture specific things when placing a new PTE into
123 * a page table, or changing an existing PTE.  Basically, there are two
124 * things that we need to take care of:
125 *
126 *  1. If PG_dcache_dirty is set for the page, we need to ensure
127 *     that any cache entries for the kernels virtual memory
128 *     range are written back to the page.
129 *  2. If we have multiple shared mappings of the same space in
130 *     an object, we need to deal with the cache aliasing issues.
131 *
132 * Note that the page_table_lock will be held.
133 */
134void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
135{
136	unsigned long pfn = pte_pfn(pte);
137	struct page *page;
138
139	if (!pfn_valid(pfn))
140		return;
141	page = pfn_to_page(pfn);
142	if (page_mapping(page)) {
143		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
144
145		if (dirty) {
146			/*
147			 * This is our first userspace mapping of this page.
148			 * Ensure that the physical page is coherent with
149			 * the kernel mapping.
150			 *
151			 * FIXME: only need to do this on VIVT and aliasing
152			 *        VIPT cache architectures.  We can do that
153			 *	  by choosing whether to set this bit...
154			 */
155			__cpuc_flush_dcache_page(page_address(page));
156		}
157
158		if (cache_is_vivt())
159			make_coherent(vma, addr, page, dirty);
160	}
161}
162
163/*
164 * Check whether the write buffer has physical address aliasing
165 * issues.  If it has, we need to avoid them for the case where
166 * we have several shared mappings of the same object in user
167 * space.
168 */
169static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
170{
171	register unsigned long zero = 0, one = 1, val;
172
173	local_irq_disable();
174	mb();
175	*p1 = one;
176	mb();
177	*p2 = zero;
178	mb();
179	val = *p1;
180	mb();
181	local_irq_enable();
182	return val != zero;
183}
184
185void __init check_writebuffer_bugs(void)
186{
187	struct page *page;
188	const char *reason;
189	unsigned long v = 1;
190
191	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
192
193	page = alloc_page(GFP_KERNEL);
194	if (page) {
195		unsigned long *p1, *p2;
196		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
197					 L_PTE_DIRTY|L_PTE_WRITE|
198					 L_PTE_BUFFERABLE);
199
200		p1 = vmap(&page, 1, VM_IOREMAP, prot);
201		p2 = vmap(&page, 1, VM_IOREMAP, prot);
202
203		if (p1 && p2) {
204			v = check_writebuffer(p1, p2);
205			reason = "enabling work-around";
206		} else {
207			reason = "unable to map memory\n";
208		}
209
210		vunmap(p1);
211		vunmap(p2);
212		put_page(page);
213	} else {
214		reason = "unable to grab page\n";
215	}
216
217	if (v) {
218		printk("failed, %s\n", reason);
219		shared_pte_mask |= L_PTE_BUFFERABLE;
220	} else {
221		printk("ok\n");
222	}
223}