PageRenderTime 19ms CodeModel.GetById 13ms app.highlight 3ms RepoModel.GetById 1ms app.codeStats 0ms

/arch/arm/lib/longlong.h

https://bitbucket.org/evzijst/gittest
C Header | 183 lines | 111 code | 9 blank | 63 comment | 12 complexity | c4a921227e2e64474bad75857bb6b85b MD5 | raw file
  1/* longlong.h -- based on code from gcc-2.95.3
  2
  3   definitions for mixed size 32/64 bit arithmetic.
  4   Copyright (C) 1991, 92, 94, 95, 96, 1997, 1998 Free Software Foundation, Inc.
  5
  6   This definition file is free software; you can redistribute it
  7   and/or modify it under the terms of the GNU General Public
  8   License as published by the Free Software Foundation; either
  9   version 2, or (at your option) any later version.
 10
 11   This definition file is distributed in the hope that it will be
 12   useful, but WITHOUT ANY WARRANTY; without even the implied
 13   warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 14   See the GNU General Public License for more details.
 15
 16   You should have received a copy of the GNU General Public License
 17   along with this program; if not, write to the Free Software
 18   Foundation, Inc., 59 Temple Place - Suite 330,
 19   Boston, MA 02111-1307, USA.  */
 20
 21/* Borrowed from GCC 2.95.3, I Molton 29/07/01 */
 22
 23#ifndef SI_TYPE_SIZE
 24#define SI_TYPE_SIZE 32
 25#endif
 26
 27#define __BITS4 (SI_TYPE_SIZE / 4)
 28#define __ll_B (1L << (SI_TYPE_SIZE / 2))
 29#define __ll_lowpart(t) ((USItype) (t) % __ll_B)
 30#define __ll_highpart(t) ((USItype) (t) / __ll_B)
 31
 32/* Define auxiliary asm macros.
 33
 34   1) umul_ppmm(high_prod, low_prod, multipler, multiplicand)
 35   multiplies two USItype integers MULTIPLER and MULTIPLICAND,
 36   and generates a two-part USItype product in HIGH_PROD and
 37   LOW_PROD.
 38
 39   2) __umulsidi3(a,b) multiplies two USItype integers A and B,
 40   and returns a UDItype product.  This is just a variant of umul_ppmm.
 41
 42   3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
 43   denominator) divides a two-word unsigned integer, composed by the
 44   integers HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and
 45   places the quotient in QUOTIENT and the remainder in REMAINDER.
 46   HIGH_NUMERATOR must be less than DENOMINATOR for correct operation.
 47   If, in addition, the most significant bit of DENOMINATOR must be 1,
 48   then the pre-processor symbol UDIV_NEEDS_NORMALIZATION is defined to 1.
 49
 50   4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
 51   denominator).  Like udiv_qrnnd but the numbers are signed.  The
 52   quotient is rounded towards 0.
 53
 54   5) count_leading_zeros(count, x) counts the number of zero-bits from
 55   the msb to the first non-zero bit.  This is the number of steps X
 56   needs to be shifted left to set the msb.  Undefined for X == 0.
 57
 58   6) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
 59   high_addend_2, low_addend_2) adds two two-word unsigned integers,
 60   composed by HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and
 61   LOW_ADDEND_2 respectively.  The result is placed in HIGH_SUM and
 62   LOW_SUM.  Overflow (i.e. carry out) is not stored anywhere, and is
 63   lost.
 64
 65   7) sub_ddmmss(high_difference, low_difference, high_minuend,
 66   low_minuend, high_subtrahend, low_subtrahend) subtracts two
 67   two-word unsigned integers, composed by HIGH_MINUEND_1 and
 68   LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and LOW_SUBTRAHEND_2
 69   respectively.  The result is placed in HIGH_DIFFERENCE and
 70   LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere,
 71   and is lost.
 72
 73   If any of these macros are left undefined for a particular CPU,
 74   C macros are used.  */
 75
 76#if defined (__arm__)
 77#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
 78  __asm__ ("adds	%1, %4, %5					\n\
 79	adc	%0, %2, %3"						\
 80	   : "=r" ((USItype) (sh)),					\
 81	     "=&r" ((USItype) (sl))					\
 82	   : "%r" ((USItype) (ah)),					\
 83	     "rI" ((USItype) (bh)),					\
 84	     "%r" ((USItype) (al)),					\
 85	     "rI" ((USItype) (bl)))
 86#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
 87  __asm__ ("subs	%1, %4, %5					\n\
 88	sbc	%0, %2, %3"						\
 89	   : "=r" ((USItype) (sh)),					\
 90	     "=&r" ((USItype) (sl))					\
 91	   : "r" ((USItype) (ah)),					\
 92	     "rI" ((USItype) (bh)),					\
 93	     "r" ((USItype) (al)),					\
 94	     "rI" ((USItype) (bl)))
 95#define umul_ppmm(xh, xl, a, b) \
 96{register USItype __t0, __t1, __t2;					\
 97  __asm__ ("%@ Inlined umul_ppmm					\n\
 98	mov	%2, %5, lsr #16						\n\
 99	mov	%0, %6, lsr #16						\n\
100	bic	%3, %5, %2, lsl #16					\n\
101	bic	%4, %6, %0, lsl #16					\n\
102	mul	%1, %3, %4						\n\
103	mul	%4, %2, %4						\n\
104	mul	%3, %0, %3						\n\
105	mul	%0, %2, %0						\n\
106	adds	%3, %4, %3						\n\
107	addcs	%0, %0, #65536						\n\
108	adds	%1, %1, %3, lsl #16					\n\
109	adc	%0, %0, %3, lsr #16"					\
110	   : "=&r" ((USItype) (xh)),					\
111	     "=r" ((USItype) (xl)),					\
112	     "=&r" (__t0), "=&r" (__t1), "=r" (__t2)			\
113	   : "r" ((USItype) (a)),					\
114	     "r" ((USItype) (b)));}
115#define UMUL_TIME 20
116#define UDIV_TIME 100
117#endif /* __arm__ */
118
119#define __umulsidi3(u, v) \
120  ({DIunion __w;							\
121    umul_ppmm (__w.s.high, __w.s.low, u, v);				\
122    __w.ll; })
123
124#define __udiv_qrnnd_c(q, r, n1, n0, d) \
125  do {									\
126    USItype __d1, __d0, __q1, __q0;					\
127    USItype __r1, __r0, __m;						\
128    __d1 = __ll_highpart (d);						\
129    __d0 = __ll_lowpart (d);						\
130									\
131    __r1 = (n1) % __d1;							\
132    __q1 = (n1) / __d1;							\
133    __m = (USItype) __q1 * __d0;					\
134    __r1 = __r1 * __ll_B | __ll_highpart (n0);				\
135    if (__r1 < __m)							\
136      {									\
137	__q1--, __r1 += (d);						\
138	if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
139	  if (__r1 < __m)						\
140	    __q1--, __r1 += (d);					\
141      }									\
142    __r1 -= __m;							\
143									\
144    __r0 = __r1 % __d1;							\
145    __q0 = __r1 / __d1;							\
146    __m = (USItype) __q0 * __d0;					\
147    __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\
148    if (__r0 < __m)							\
149      {									\
150	__q0--, __r0 += (d);						\
151	if (__r0 >= (d))						\
152	  if (__r0 < __m)						\
153	    __q0--, __r0 += (d);					\
154      }									\
155    __r0 -= __m;							\
156									\
157    (q) = (USItype) __q1 * __ll_B | __q0;				\
158    (r) = __r0;								\
159  } while (0)
160
161#define UDIV_NEEDS_NORMALIZATION 1
162#define udiv_qrnnd __udiv_qrnnd_c
163
164#define count_leading_zeros(count, x) \
165  do {									\
166    USItype __xr = (x);							\
167    USItype __a;							\
168									\
169    if (SI_TYPE_SIZE <= 32)						\
170      {									\
171	__a = __xr < ((USItype)1<<2*__BITS4)				\
172	  ? (__xr < ((USItype)1<<__BITS4) ? 0 : __BITS4)		\
173	  : (__xr < ((USItype)1<<3*__BITS4) ?  2*__BITS4 : 3*__BITS4);	\
174      }									\
175    else								\
176      {									\
177	for (__a = SI_TYPE_SIZE - 8; __a > 0; __a -= 8)			\
178	  if (((__xr >> __a) & 0xff) != 0)				\
179	    break;							\
180      }									\
181									\
182    (count) = SI_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a);		\
183  } while (0)