/Proj4/PJ_lcca.c
http://github.com/route-me/route-me · C · 76 lines · 64 code · 6 blank · 6 comment · 9 complexity · 343d16310027e7fdf17c1c91c36adeb3 MD5 · raw file
- static const char RCS_ID[] = "$Id: PJ_lcca.c,v 1.1 2003/03/04 02:59:41 warmerda Exp $";
- /* PROJ.4 Cartographic Projection System -- Revision Log:
- **$Log: PJ_lcca.c,v $
- **Revision 1.1 2003/03/04 02:59:41 warmerda
- **New
- **
- */
- #define MAX_ITER 10
- #define DEL_TOL 1e-12
- #define PROJ_PARMS__ \
- double *en; \
- double r0, l, M0; \
- double C;
- #define PJ_LIB__
- #include "projects.h"
- PROJ_HEAD(lcca, "Lambert Conformal Conic Alternative")
- "\n\tConic, Sph&Ell\n\tlat_0=";
- static double /* func to compute dr */
- fS(double S, double C) {
- return(S * ( 1. + S * S * C));
- }
- static double /* deriv of fs */
- fSp(double S, double C) {
- return(1. + 3.* S * S * C);
- }
- FORWARD(e_forward); /* ellipsoid */
- double S, S3, r, dr;
-
- S = pj_mlfn(lp.phi, sin(lp.phi), cos(lp.phi), P->en) - P->M0;
- dr = fS(S, P->C);
- r = P->r0 - dr;
- xy.x = P->k0 * (r * sin( lp.lam *= P->l ) );
- xy.y = P->k0 * (P->r0 - r * cos(lp.lam) );
- return (xy);
- }
- INVERSE(e_inverse); /* ellipsoid & spheroid */
- double theta, dr, S, dif;
- int i;
- xy.x /= P->k0;
- xy.y /= P->k0;
- theta = atan2(xy.x , P->r0 - xy.y);
- dr = xy.y - xy.x * tan(0.5 * theta);
- lp.lam = theta / P->l;
- S = dr;
- for (i = MAX_ITER; i ; --i) {
- S -= (dif = (fS(S, P->C) - dr) / fSp(S, P->C));
- if (fabs(dif) < DEL_TOL) break;
- }
- if (!i) I_ERROR
- lp.phi = pj_inv_mlfn(S + P->M0, P->es, P->en);
- return (lp);
- }
- FREEUP; if (P) { if (P->en) pj_dalloc(P->en); pj_dalloc(P); } }
- ENTRY0(lcca)
- double s2p0, N0, R0, tan0, tan20;
- if (!(P->en = pj_enfn(P->es))) E_ERROR_0;
- if (!pj_param(P->params, "tlat_0").i) E_ERROR(50);
- if (P->phi0 == 0.) E_ERROR(51);
- P->l = sin(P->phi0);
- P->M0 = pj_mlfn(P->phi0, P->l, cos(P->phi0), P->en);
- s2p0 = P->l * P->l;
- R0 = 1. / (1. - P->es * s2p0);
- N0 = sqrt(R0);
- R0 *= P->one_es * N0;
- tan0 = tan(P->phi0);
- tan20 = tan0 * tan0;
- P->r0 = N0 / tan0;
- P->C = 1. / (6. * R0 * N0);
- P->inv = e_inverse;
- P->fwd = e_forward;
- ENDENTRY(P)