/gdata/Crypto/Util/number.py
http://radioappz.googlecode.com/ · Python · 201 lines · 111 code · 23 blank · 67 comment · 30 complexity · e5e94e6bd70a37273df3643a2f7b0168 MD5 · raw file
- #
- # number.py : Number-theoretic functions
- #
- # Part of the Python Cryptography Toolkit
- #
- # Distribute and use freely; there are no restrictions on further
- # dissemination and usage except those imposed by the laws of your
- # country of residence. This software is provided "as is" without
- # warranty of fitness for use or suitability for any purpose, express
- # or implied. Use at your own risk or not at all.
- #
- __revision__ = "$Id: number.py,v 1.13 2003/04/04 18:21:07 akuchling Exp $"
- bignum = long
- try:
- from Crypto.PublicKey import _fastmath
- except ImportError:
- _fastmath = None
- # Commented out and replaced with faster versions below
- ## def long2str(n):
- ## s=''
- ## while n>0:
- ## s=chr(n & 255)+s
- ## n=n>>8
- ## return s
- ## import types
- ## def str2long(s):
- ## if type(s)!=types.StringType: return s # Integers will be left alone
- ## return reduce(lambda x,y : x*256+ord(y), s, 0L)
- def size (N):
- """size(N:long) : int
- Returns the size of the number N in bits.
- """
- bits, power = 0,1L
- while N >= power:
- bits += 1
- power = power << 1
- return bits
- def getRandomNumber(N, randfunc):
- """getRandomNumber(N:int, randfunc:callable):long
- Return an N-bit random number."""
- S = randfunc(N/8)
- odd_bits = N % 8
- if odd_bits != 0:
- char = ord(randfunc(1)) >> (8-odd_bits)
- S = chr(char) + S
- value = bytes_to_long(S)
- value |= 2L ** (N-1) # Ensure high bit is set
- assert size(value) >= N
- return value
- def GCD(x,y):
- """GCD(x:long, y:long): long
- Return the GCD of x and y.
- """
- x = abs(x) ; y = abs(y)
- while x > 0:
- x, y = y % x, x
- return y
- def inverse(u, v):
- """inverse(u:long, u:long):long
- Return the inverse of u mod v.
- """
- u3, v3 = long(u), long(v)
- u1, v1 = 1L, 0L
- while v3 > 0:
- q=u3 / v3
- u1, v1 = v1, u1 - v1*q
- u3, v3 = v3, u3 - v3*q
- while u1<0:
- u1 = u1 + v
- return u1
- # Given a number of bits to generate and a random generation function,
- # find a prime number of the appropriate size.
- def getPrime(N, randfunc):
- """getPrime(N:int, randfunc:callable):long
- Return a random N-bit prime number.
- """
- number=getRandomNumber(N, randfunc) | 1
- while (not isPrime(number)):
- number=number+2
- return number
- def isPrime(N):
- """isPrime(N:long):bool
- Return true if N is prime.
- """
- if N == 1:
- return 0
- if N in sieve:
- return 1
- for i in sieve:
- if (N % i)==0:
- return 0
- # Use the accelerator if available
- if _fastmath is not None:
- return _fastmath.isPrime(N)
- # Compute the highest bit that's set in N
- N1 = N - 1L
- n = 1L
- while (n<N):
- n=n<<1L
- n = n >> 1L
- # Rabin-Miller test
- for c in sieve[:7]:
- a=long(c) ; d=1L ; t=n
- while (t): # Iterate over the bits in N1
- x=(d*d) % N
- if x==1L and d!=1L and d!=N1:
- return 0 # Square root of 1 found
- if N1 & t:
- d=(x*a) % N
- else:
- d=x
- t = t >> 1L
- if d!=1L:
- return 0
- return 1
- # Small primes used for checking primality; these are all the primes
- # less than 256. This should be enough to eliminate most of the odd
- # numbers before needing to do a Rabin-Miller test at all.
- sieve=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
- 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
- 197, 199, 211, 223, 227, 229, 233, 239, 241, 251]
- # Improved conversion functions contributed by Barry Warsaw, after
- # careful benchmarking
- import struct
- def long_to_bytes(n, blocksize=0):
- """long_to_bytes(n:long, blocksize:int) : string
- Convert a long integer to a byte string.
- If optional blocksize is given and greater than zero, pad the front of the
- byte string with binary zeros so that the length is a multiple of
- blocksize.
- """
- # after much testing, this algorithm was deemed to be the fastest
- s = ''
- n = long(n)
- pack = struct.pack
- while n > 0:
- s = pack('>I', n & 0xffffffffL) + s
- n = n >> 32
- # strip off leading zeros
- for i in range(len(s)):
- if s[i] != '\000':
- break
- else:
- # only happens when n == 0
- s = '\000'
- i = 0
- s = s[i:]
- # add back some pad bytes. this could be done more efficiently w.r.t. the
- # de-padding being done above, but sigh...
- if blocksize > 0 and len(s) % blocksize:
- s = (blocksize - len(s) % blocksize) * '\000' + s
- return s
- def bytes_to_long(s):
- """bytes_to_long(string) : long
- Convert a byte string to a long integer.
- This is (essentially) the inverse of long_to_bytes().
- """
- acc = 0L
- unpack = struct.unpack
- length = len(s)
- if length % 4:
- extra = (4 - length % 4)
- s = '\000' * extra + s
- length = length + extra
- for i in range(0, length, 4):
- acc = (acc << 32) + unpack('>I', s[i:i+4])[0]
- return acc
- # For backwards compatibility...
- import warnings
- def long2str(n, blocksize=0):
- warnings.warn("long2str() has been replaced by long_to_bytes()")
- return long_to_bytes(n, blocksize)
- def str2long(s):
- warnings.warn("str2long() has been replaced by bytes_to_long()")
- return bytes_to_long(s)