/README.md

https://github.com/Caoimhyn/YOLO-R-MxNet · Markdown · 46 lines · 26 code · 20 blank · 0 comment · 0 complexity · f8a173d486a0a17357237051825e8a75 MD5 · raw file

  1. # YOLO v1 with R language ( MxNet library )
  2. (Version 0.1, Last updated :2018.07.02)
  3. #### [MxNet](https://mxnet.apache.org/):A flexible and efficient library for deep learning.
  4. ## 1. Introduction
  5. This is mxnet implementation of the YOLO:Real-Time Object Detection.
  6. YOLO is an unified framework for object detection with a single network.
  7. It has been originally introduced in this research [article](https://pjreddie.com/media/files/papers/yolo.pdf).
  8. This repository contains a MxNet implementation of a MobileNets_V2-based YOLO networks.
  9. For details with Google's MobileNets, please read the following papers:
  10. - [v1] [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
  11. - [v2] [Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation](https://arxiv.org/abs/1801.04381)
  12. ## 2. Pretrained Models on ImageNet
  13. See: https://github.com/yuantangliang/MobileNet-v2-Mxnet
  14. The top-1/5 accuracy rates by using single center crop (crop size: 224x224, image size: 256xN):
  15. Network|Top-1|Top-5|sha256sum|Architecture
  16. :---:|:---:|:---:|:---:|:---:
  17. MobileNet v2| 71.90| 90.49| a3124ce7 (13.5 MB)| [netscope](http://ethereon.github.io/netscope/#/gist/d01b5b8783b4582a42fe07bd46243986)
  18. ## 3. Pikachu data
  19. For testing model purposes, well train our model to detect Pikachu in the wild. We use a synthetic toy dataset by rendering images from open-sourced 3D Pikachu models.
  20. For more detail. Please see
  21. - https://gluon.mxnet.io/chapter08_computer-vision/object-detection.html.
  22. - http://zh.gluon.ai/chapter_computer-vision/pikachu.html.
  23. <p align="center">
  24. <img src="https://user-images.githubusercontent.com/3307514/29479494-5dc28a02-8427-11e7-91d0-2849b88c17cd.png">
  25. </p>
  26. The dataset consists of 1088 pikachus with random pose/scale/position in random background images. The exact locations are recorded as ground-truth for training and validation.