/src/mochinum.erl
Erlang | 372 lines | 267 code | 32 blank | 73 comment | 1 complexity | f05c2bd985a35220ab789b29cdc41d21 MD5 | raw file
Possible License(s): MIT
- %% @copyright 2007 Mochi Media, Inc.
- %% @author Bob Ippolito <bob@mochimedia.com>
- %%
- %% Permission is hereby granted, free of charge, to any person obtaining a
- %% copy of this software and associated documentation files (the "Software"),
- %% to deal in the Software without restriction, including without limitation
- %% the rights to use, copy, modify, merge, publish, distribute, sublicense,
- %% and/or sell copies of the Software, and to permit persons to whom the
- %% Software is furnished to do so, subject to the following conditions:
- %%
- %% The above copyright notice and this permission notice shall be included in
- %% all copies or substantial portions of the Software.
- %%
- %% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- %% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- %% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- %% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- %% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- %% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- %% DEALINGS IN THE SOFTWARE.
- %% @doc Useful numeric algorithms for floats that cover some deficiencies
- %% in the math module. More interesting is digits/1, which implements
- %% the algorithm from:
- %% http://www.cs.indiana.edu/~burger/fp/index.html
- %% See also "Printing Floating-Point Numbers Quickly and Accurately"
- %% in Proceedings of the SIGPLAN '96 Conference on Programming Language
- %% Design and Implementation.
- -module(mochinum).
- -author("Bob Ippolito <bob@mochimedia.com>").
- -export([digits/1, frexp/1, int_pow/2, int_ceil/1]).
- %% IEEE 754 Float exponent bias
- -define(FLOAT_BIAS, 1022).
- -define(MIN_EXP, -1074).
- -define(BIG_POW, 4503599627370496).
- %% External API
- %% @spec digits(number()) -> string()
- %% @doc Returns a string that accurately represents the given integer or float
- %% using a conservative amount of digits. Great for generating
- %% human-readable output, or compact ASCII serializations for floats.
- digits(N) when is_integer(N) ->
- integer_to_list(N);
- digits(0.0) ->
- "0.0";
- digits(Float) ->
- {Frac1, Exp1} = frexp_int(Float),
- [Place0 | Digits0] = digits1(Float, Exp1, Frac1),
- {Place, Digits} = transform_digits(Place0, Digits0),
- R = insert_decimal(Place, Digits),
- case Float < 0 of
- true ->
- [$- | R];
- _ ->
- R
- end.
- %% @spec frexp(F::float()) -> {Frac::float(), Exp::float()}
- %% @doc Return the fractional and exponent part of an IEEE 754 double,
- %% equivalent to the libc function of the same name.
- %% F = Frac * pow(2, Exp).
- frexp(F) ->
- frexp1(unpack(F)).
- %% @spec int_pow(X::integer(), N::integer()) -> Y::integer()
- %% @doc Moderately efficient way to exponentiate integers.
- %% int_pow(10, 2) = 100.
- int_pow(_X, 0) ->
- 1;
- int_pow(X, N) when N > 0 ->
- int_pow(X, N, 1).
- %% @spec int_ceil(F::float()) -> integer()
- %% @doc Return the ceiling of F as an integer. The ceiling is defined as
- %% F when F == trunc(F);
- %% trunc(F) when F < 0;
- %% trunc(F) + 1 when F > 0.
- int_ceil(X) ->
- T = trunc(X),
- case (X - T) of
- Pos when Pos > 0 -> T + 1;
- _ -> T
- end.
- %% Internal API
- int_pow(X, N, R) when N < 2 ->
- R * X;
- int_pow(X, N, R) ->
- int_pow(X * X, N bsr 1, case N band 1 of 1 -> R * X; 0 -> R end).
- insert_decimal(0, S) ->
- "0." ++ S;
- insert_decimal(Place, S) when Place > 0 ->
- L = length(S),
- case Place - L of
- 0 ->
- S ++ ".0";
- N when N < 0 ->
- {S0, S1} = lists:split(L + N, S),
- S0 ++ "." ++ S1;
- N when N < 6 ->
- %% More places than digits
- S ++ lists:duplicate(N, $0) ++ ".0";
- _ ->
- insert_decimal_exp(Place, S)
- end;
- insert_decimal(Place, S) when Place > -6 ->
- "0." ++ lists:duplicate(abs(Place), $0) ++ S;
- insert_decimal(Place, S) ->
- insert_decimal_exp(Place, S).
- insert_decimal_exp(Place, S) ->
- [C | S0] = S,
- S1 = case S0 of
- [] ->
- "0";
- _ ->
- S0
- end,
- Exp = case Place < 0 of
- true ->
- "e-";
- false ->
- "e+"
- end,
- [C] ++ "." ++ S1 ++ Exp ++ integer_to_list(abs(Place - 1)).
- digits1(Float, Exp, Frac) ->
- Round = ((Frac band 1) =:= 0),
- case Exp >= 0 of
- true ->
- BExp = 1 bsl Exp,
- case (Frac =/= ?BIG_POW) of
- true ->
- scale((Frac * BExp * 2), 2, BExp, BExp,
- Round, Round, Float);
- false ->
- scale((Frac * BExp * 4), 4, (BExp * 2), BExp,
- Round, Round, Float)
- end;
- false ->
- case (Exp =:= ?MIN_EXP) orelse (Frac =/= ?BIG_POW) of
- true ->
- scale((Frac * 2), 1 bsl (1 - Exp), 1, 1,
- Round, Round, Float);
- false ->
- scale((Frac * 4), 1 bsl (2 - Exp), 2, 1,
- Round, Round, Float)
- end
- end.
- scale(R, S, MPlus, MMinus, LowOk, HighOk, Float) ->
- Est = int_ceil(math:log10(abs(Float)) - 1.0e-10),
- %% Note that the scheme implementation uses a 326 element look-up table
- %% for int_pow(10, N) where we do not.
- case Est >= 0 of
- true ->
- fixup(R, S * int_pow(10, Est), MPlus, MMinus, Est,
- LowOk, HighOk);
- false ->
- Scale = int_pow(10, -Est),
- fixup(R * Scale, S, MPlus * Scale, MMinus * Scale, Est,
- LowOk, HighOk)
- end.
- fixup(R, S, MPlus, MMinus, K, LowOk, HighOk) ->
- TooLow = case HighOk of
- true ->
- (R + MPlus) >= S;
- false ->
- (R + MPlus) > S
- end,
- case TooLow of
- true ->
- [(K + 1) | generate(R, S, MPlus, MMinus, LowOk, HighOk)];
- false ->
- [K | generate(R * 10, S, MPlus * 10, MMinus * 10, LowOk, HighOk)]
- end.
- generate(R0, S, MPlus, MMinus, LowOk, HighOk) ->
- D = R0 div S,
- R = R0 rem S,
- TC1 = case LowOk of
- true ->
- R =< MMinus;
- false ->
- R < MMinus
- end,
- TC2 = case HighOk of
- true ->
- (R + MPlus) >= S;
- false ->
- (R + MPlus) > S
- end,
- case TC1 of
- false ->
- case TC2 of
- false ->
- [D | generate(R * 10, S, MPlus * 10, MMinus * 10,
- LowOk, HighOk)];
- true ->
- [D + 1]
- end;
- true ->
- case TC2 of
- false ->
- [D];
- true ->
- case R * 2 < S of
- true ->
- [D];
- false ->
- [D + 1]
- end
- end
- end.
- unpack(Float) ->
- <<Sign:1, Exp:11, Frac:52>> = <<Float:64/float>>,
- {Sign, Exp, Frac}.
- frexp1({_Sign, 0, 0}) ->
- {0.0, 0};
- frexp1({Sign, 0, Frac}) ->
- Exp = log2floor(Frac),
- <<Frac1:64/float>> = <<Sign:1, ?FLOAT_BIAS:11, (Frac-1):52>>,
- {Frac1, -(?FLOAT_BIAS) - 52 + Exp};
- frexp1({Sign, Exp, Frac}) ->
- <<Frac1:64/float>> = <<Sign:1, ?FLOAT_BIAS:11, Frac:52>>,
- {Frac1, Exp - ?FLOAT_BIAS}.
- log2floor(Int) ->
- log2floor(Int, 0).
- log2floor(0, N) ->
- N;
- log2floor(Int, N) ->
- log2floor(Int bsr 1, 1 + N).
- transform_digits(Place, [0 | Rest]) ->
- transform_digits(Place, Rest);
- transform_digits(Place, Digits) ->
- {Place, [$0 + D || D <- Digits]}.
- frexp_int(F) ->
- case unpack(F) of
- {_Sign, 0, Frac} ->
- {Frac, ?MIN_EXP};
- {_Sign, Exp, Frac} ->
- {Frac + (1 bsl 52), Exp - 53 - ?FLOAT_BIAS}
- end.
- %%
- %% Tests
- %%
- -ifdef(TEST).
- -include_lib("eunit/include/eunit.hrl").
- int_ceil_test() ->
- ?assertEqual(1, int_ceil(0.0001)),
- ?assertEqual(0, int_ceil(0.0)),
- ?assertEqual(1, int_ceil(0.99)),
- ?assertEqual(1, int_ceil(1.0)),
- ?assertEqual(-1, int_ceil(-1.5)),
- ?assertEqual(-2, int_ceil(-2.0)),
- ok.
- int_pow_test() ->
- ?assertEqual(1, int_pow(1, 1)),
- ?assertEqual(1, int_pow(1, 0)),
- ?assertEqual(1, int_pow(10, 0)),
- ?assertEqual(10, int_pow(10, 1)),
- ?assertEqual(100, int_pow(10, 2)),
- ?assertEqual(1000, int_pow(10, 3)),
- ok.
- digits_test() ->
- ?assertEqual("0",
- digits(0)),
- ?assertEqual("0.0",
- digits(0.0)),
- ?assertEqual("1.0",
- digits(1.0)),
- ?assertEqual("-1.0",
- digits(-1.0)),
- ?assertEqual("0.1",
- digits(0.1)),
- ?assertEqual("0.01",
- digits(0.01)),
- ?assertEqual("0.001",
- digits(0.001)),
- ?assertEqual("1.0e+6",
- digits(1000000.0)),
- ?assertEqual("0.5",
- digits(0.5)),
- ?assertEqual("4503599627370496.0",
- digits(4503599627370496.0)),
- %% small denormalized number
- %% 4.94065645841246544177e-324 =:= 5.0e-324
- <<SmallDenorm/float>> = <<0,0,0,0,0,0,0,1>>,
- ?assertEqual("5.0e-324",
- digits(SmallDenorm)),
- ?assertEqual(SmallDenorm,
- list_to_float(digits(SmallDenorm))),
- %% large denormalized number
- %% 2.22507385850720088902e-308
- <<BigDenorm/float>> = <<0,15,255,255,255,255,255,255>>,
- ?assertEqual("2.225073858507201e-308",
- digits(BigDenorm)),
- ?assertEqual(BigDenorm,
- list_to_float(digits(BigDenorm))),
- %% small normalized number
- %% 2.22507385850720138309e-308
- <<SmallNorm/float>> = <<0,16,0,0,0,0,0,0>>,
- ?assertEqual("2.2250738585072014e-308",
- digits(SmallNorm)),
- ?assertEqual(SmallNorm,
- list_to_float(digits(SmallNorm))),
- %% large normalized number
- %% 1.79769313486231570815e+308
- <<LargeNorm/float>> = <<127,239,255,255,255,255,255,255>>,
- ?assertEqual("1.7976931348623157e+308",
- digits(LargeNorm)),
- ?assertEqual(LargeNorm,
- list_to_float(digits(LargeNorm))),
- %% issue #10 - mochinum:frexp(math:pow(2, -1074)).
- ?assertEqual("5.0e-324",
- digits(math:pow(2, -1074))),
- ok.
- frexp_test() ->
- %% zero
- ?assertEqual({0.0, 0}, frexp(0.0)),
- %% one
- ?assertEqual({0.5, 1}, frexp(1.0)),
- %% negative one
- ?assertEqual({-0.5, 1}, frexp(-1.0)),
- %% small denormalized number
- %% 4.94065645841246544177e-324
- <<SmallDenorm/float>> = <<0,0,0,0,0,0,0,1>>,
- ?assertEqual({0.5, -1073}, frexp(SmallDenorm)),
- %% large denormalized number
- %% 2.22507385850720088902e-308
- <<BigDenorm/float>> = <<0,15,255,255,255,255,255,255>>,
- ?assertEqual(
- {0.99999999999999978, -1022},
- frexp(BigDenorm)),
- %% small normalized number
- %% 2.22507385850720138309e-308
- <<SmallNorm/float>> = <<0,16,0,0,0,0,0,0>>,
- ?assertEqual({0.5, -1021}, frexp(SmallNorm)),
- %% large normalized number
- %% 1.79769313486231570815e+308
- <<LargeNorm/float>> = <<127,239,255,255,255,255,255,255>>,
- ?assertEqual(
- {0.99999999999999989, 1024},
- frexp(LargeNorm)),
- %% issue #10 - mochinum:frexp(math:pow(2, -1074)).
- ?assertEqual(
- {0.5, -1073},
- frexp(math:pow(2, -1074))),
- ok.
- -endif.