PageRenderTime 34ms CodeModel.GetById 16ms RepoModel.GetById 0ms app.codeStats 1ms

/external/bullet-2.81-rev2613/src/BulletCollision/CollisionDispatch/btCollisionWorld.cpp

https://gitlab.com/dannywillems/mass_collide
C++ | 1353 lines | 997 code | 258 blank | 98 comment | 81 complexity | 558b7ff8861e32f81a8f2350dad53b7c MD5 | raw file
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. #include "btCollisionWorld.h"
  14. #include "btCollisionDispatcher.h"
  15. #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
  16. #include "BulletCollision/CollisionShapes/btCollisionShape.h"
  17. #include "BulletCollision/CollisionShapes/btConvexShape.h"
  18. #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
  19. #include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
  20. #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
  21. #include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
  22. #include "BulletCollision/CollisionShapes/btCompoundShape.h"
  23. #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
  24. #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
  25. #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
  26. #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
  27. #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
  28. #include "BulletCollision/BroadphaseCollision/btDbvt.h"
  29. #include "LinearMath/btAabbUtil2.h"
  30. #include "LinearMath/btQuickprof.h"
  31. #include "LinearMath/btStackAlloc.h"
  32. #include "LinearMath/btSerializer.h"
  33. #include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
  34. #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
  35. //#define DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  36. //#define USE_BRUTEFORCE_RAYBROADPHASE 1
  37. //RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation' or 'updateAabbs' before using a rayTest
  38. //#define RECALCULATE_AABB_RAYCAST 1
  39. //When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
  40. #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
  41. #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
  42. #include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
  43. ///for debug drawing
  44. //for debug rendering
  45. #include "BulletCollision/CollisionShapes/btBoxShape.h"
  46. #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
  47. #include "BulletCollision/CollisionShapes/btCompoundShape.h"
  48. #include "BulletCollision/CollisionShapes/btConeShape.h"
  49. #include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h"
  50. #include "BulletCollision/CollisionShapes/btCylinderShape.h"
  51. #include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
  52. #include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
  53. #include "BulletCollision/CollisionShapes/btSphereShape.h"
  54. #include "BulletCollision/CollisionShapes/btTriangleCallback.h"
  55. #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h"
  56. #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
  57. btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
  58. :m_dispatcher1(dispatcher),
  59. m_broadphasePairCache(pairCache),
  60. m_debugDrawer(0),
  61. m_forceUpdateAllAabbs(true)
  62. {
  63. m_stackAlloc = collisionConfiguration->getStackAllocator();
  64. m_dispatchInfo.m_stackAllocator = m_stackAlloc;
  65. }
  66. btCollisionWorld::~btCollisionWorld()
  67. {
  68. //clean up remaining objects
  69. int i;
  70. for (i=0;i<m_collisionObjects.size();i++)
  71. {
  72. btCollisionObject* collisionObject= m_collisionObjects[i];
  73. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  74. if (bp)
  75. {
  76. //
  77. // only clear the cached algorithms
  78. //
  79. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
  80. getBroadphase()->destroyProxy(bp,m_dispatcher1);
  81. collisionObject->setBroadphaseHandle(0);
  82. }
  83. }
  84. }
  85. void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask)
  86. {
  87. btAssert(collisionObject);
  88. //check that the object isn't already added
  89. btAssert( m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size());
  90. m_collisionObjects.push_back(collisionObject);
  91. //calculate new AABB
  92. btTransform trans = collisionObject->getWorldTransform();
  93. btVector3 minAabb;
  94. btVector3 maxAabb;
  95. collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb);
  96. int type = collisionObject->getCollisionShape()->getShapeType();
  97. collisionObject->setBroadphaseHandle( getBroadphase()->createProxy(
  98. minAabb,
  99. maxAabb,
  100. type,
  101. collisionObject,
  102. collisionFilterGroup,
  103. collisionFilterMask,
  104. m_dispatcher1,0
  105. )) ;
  106. }
  107. void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj)
  108. {
  109. btVector3 minAabb,maxAabb;
  110. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
  111. //need to increase the aabb for contact thresholds
  112. btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold);
  113. minAabb -= contactThreshold;
  114. maxAabb += contactThreshold;
  115. if(getDispatchInfo().m_useContinuous && colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject())
  116. {
  117. btVector3 minAabb2,maxAabb2;
  118. colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2);
  119. minAabb2 -= contactThreshold;
  120. maxAabb2 += contactThreshold;
  121. minAabb.setMin(minAabb2);
  122. maxAabb.setMax(maxAabb2);
  123. }
  124. btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;
  125. //moving objects should be moderately sized, probably something wrong if not
  126. if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12)))
  127. {
  128. bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
  129. } else
  130. {
  131. //something went wrong, investigate
  132. //this assert is unwanted in 3D modelers (danger of loosing work)
  133. colObj->setActivationState(DISABLE_SIMULATION);
  134. static bool reportMe = true;
  135. if (reportMe && m_debugDrawer)
  136. {
  137. reportMe = false;
  138. m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
  139. m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n");
  140. m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
  141. m_debugDrawer->reportErrorWarning("Thanks.\n");
  142. }
  143. }
  144. }
  145. void btCollisionWorld::updateAabbs()
  146. {
  147. BT_PROFILE("updateAabbs");
  148. btTransform predictedTrans;
  149. for ( int i=0;i<m_collisionObjects.size();i++)
  150. {
  151. btCollisionObject* colObj = m_collisionObjects[i];
  152. //only update aabb of active objects
  153. if (m_forceUpdateAllAabbs || colObj->isActive())
  154. {
  155. updateSingleAabb(colObj);
  156. }
  157. }
  158. }
  159. void btCollisionWorld::computeOverlappingPairs()
  160. {
  161. BT_PROFILE("calculateOverlappingPairs");
  162. m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
  163. }
  164. void btCollisionWorld::performDiscreteCollisionDetection()
  165. {
  166. BT_PROFILE("performDiscreteCollisionDetection");
  167. btDispatcherInfo& dispatchInfo = getDispatchInfo();
  168. updateAabbs();
  169. computeOverlappingPairs();
  170. btDispatcher* dispatcher = getDispatcher();
  171. {
  172. BT_PROFILE("dispatchAllCollisionPairs");
  173. if (dispatcher)
  174. dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1);
  175. }
  176. }
  177. void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
  178. {
  179. //bool removeFromBroadphase = false;
  180. {
  181. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  182. if (bp)
  183. {
  184. //
  185. // only clear the cached algorithms
  186. //
  187. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
  188. getBroadphase()->destroyProxy(bp,m_dispatcher1);
  189. collisionObject->setBroadphaseHandle(0);
  190. }
  191. }
  192. //swapremove
  193. m_collisionObjects.remove(collisionObject);
  194. }
  195. void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
  196. btCollisionObject* collisionObject,
  197. const btCollisionShape* collisionShape,
  198. const btTransform& colObjWorldTransform,
  199. RayResultCallback& resultCallback)
  200. {
  201. btCollisionObjectWrapper colObWrap(0,collisionShape,collisionObject,colObjWorldTransform);
  202. btCollisionWorld::rayTestSingleInternal(rayFromTrans,rayToTrans,&colObWrap,resultCallback);
  203. }
  204. void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans,const btTransform& rayToTrans,
  205. const btCollisionObjectWrapper* collisionObjectWrap,
  206. RayResultCallback& resultCallback)
  207. {
  208. btSphereShape pointShape(btScalar(0.0));
  209. pointShape.setMargin(0.f);
  210. const btConvexShape* castShape = &pointShape;
  211. const btCollisionShape* collisionShape = collisionObjectWrap->getCollisionShape();
  212. const btTransform& colObjWorldTransform = collisionObjectWrap->getWorldTransform();
  213. if (collisionShape->isConvex())
  214. {
  215. // BT_PROFILE("rayTestConvex");
  216. btConvexCast::CastResult castResult;
  217. castResult.m_fraction = resultCallback.m_closestHitFraction;
  218. btConvexShape* convexShape = (btConvexShape*) collisionShape;
  219. btVoronoiSimplexSolver simplexSolver;
  220. #define USE_SUBSIMPLEX_CONVEX_CAST 1
  221. #ifdef USE_SUBSIMPLEX_CONVEX_CAST
  222. btSubsimplexConvexCast convexCaster(castShape,convexShape,&simplexSolver);
  223. #else
  224. //btGjkConvexCast convexCaster(castShape,convexShape,&simplexSolver);
  225. //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
  226. #endif //#USE_SUBSIMPLEX_CONVEX_CAST
  227. if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
  228. {
  229. //add hit
  230. if (castResult.m_normal.length2() > btScalar(0.0001))
  231. {
  232. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  233. {
  234. #ifdef USE_SUBSIMPLEX_CONVEX_CAST
  235. //rotate normal into worldspace
  236. castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
  237. #endif //USE_SUBSIMPLEX_CONVEX_CAST
  238. castResult.m_normal.normalize();
  239. btCollisionWorld::LocalRayResult localRayResult
  240. (
  241. collisionObjectWrap->getCollisionObject(),
  242. 0,
  243. castResult.m_normal,
  244. castResult.m_fraction
  245. );
  246. bool normalInWorldSpace = true;
  247. resultCallback.addSingleResult(localRayResult, normalInWorldSpace);
  248. }
  249. }
  250. }
  251. } else {
  252. if (collisionShape->isConcave())
  253. {
  254. // BT_PROFILE("rayTestConcave");
  255. if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
  256. {
  257. ///optimized version for btBvhTriangleMeshShape
  258. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  259. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  260. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  261. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  262. //ConvexCast::CastResult
  263. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  264. {
  265. btCollisionWorld::RayResultCallback* m_resultCallback;
  266. const btCollisionObject* m_collisionObject;
  267. btTriangleMeshShape* m_triangleMesh;
  268. btTransform m_colObjWorldTransform;
  269. BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
  270. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh,const btTransform& colObjWorldTransform):
  271. //@BP Mod
  272. btTriangleRaycastCallback(from,to, resultCallback->m_flags),
  273. m_resultCallback(resultCallback),
  274. m_collisionObject(collisionObject),
  275. m_triangleMesh(triangleMesh),
  276. m_colObjWorldTransform(colObjWorldTransform)
  277. {
  278. }
  279. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
  280. {
  281. btCollisionWorld::LocalShapeInfo shapeInfo;
  282. shapeInfo.m_shapePart = partId;
  283. shapeInfo.m_triangleIndex = triangleIndex;
  284. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  285. btCollisionWorld::LocalRayResult rayResult
  286. (m_collisionObject,
  287. &shapeInfo,
  288. hitNormalWorld,
  289. hitFraction);
  290. bool normalInWorldSpace = true;
  291. return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);
  292. }
  293. };
  294. BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),triangleMesh,colObjWorldTransform);
  295. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  296. triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal);
  297. } else
  298. {
  299. //generic (slower) case
  300. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  301. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  302. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  303. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  304. //ConvexCast::CastResult
  305. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  306. {
  307. btCollisionWorld::RayResultCallback* m_resultCallback;
  308. const btCollisionObject* m_collisionObject;
  309. btConcaveShape* m_triangleMesh;
  310. btTransform m_colObjWorldTransform;
  311. BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
  312. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform):
  313. //@BP Mod
  314. btTriangleRaycastCallback(from,to, resultCallback->m_flags),
  315. m_resultCallback(resultCallback),
  316. m_collisionObject(collisionObject),
  317. m_triangleMesh(triangleMesh),
  318. m_colObjWorldTransform(colObjWorldTransform)
  319. {
  320. }
  321. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
  322. {
  323. btCollisionWorld::LocalShapeInfo shapeInfo;
  324. shapeInfo.m_shapePart = partId;
  325. shapeInfo.m_triangleIndex = triangleIndex;
  326. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  327. btCollisionWorld::LocalRayResult rayResult
  328. (m_collisionObject,
  329. &shapeInfo,
  330. hitNormalWorld,
  331. hitFraction);
  332. bool normalInWorldSpace = true;
  333. return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);
  334. }
  335. };
  336. BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),concaveShape, colObjWorldTransform);
  337. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  338. btVector3 rayAabbMinLocal = rayFromLocal;
  339. rayAabbMinLocal.setMin(rayToLocal);
  340. btVector3 rayAabbMaxLocal = rayFromLocal;
  341. rayAabbMaxLocal.setMax(rayToLocal);
  342. concaveShape->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
  343. }
  344. } else {
  345. // BT_PROFILE("rayTestCompound");
  346. if (collisionShape->isCompound())
  347. {
  348. struct LocalInfoAdder2 : public RayResultCallback
  349. {
  350. RayResultCallback* m_userCallback;
  351. int m_i;
  352. LocalInfoAdder2 (int i, RayResultCallback *user)
  353. : m_userCallback(user), m_i(i)
  354. {
  355. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  356. m_flags = m_userCallback->m_flags;
  357. }
  358. virtual bool needsCollision(btBroadphaseProxy* p) const
  359. {
  360. return m_userCallback->needsCollision(p);
  361. }
  362. virtual btScalar addSingleResult (btCollisionWorld::LocalRayResult &r, bool b)
  363. {
  364. btCollisionWorld::LocalShapeInfo shapeInfo;
  365. shapeInfo.m_shapePart = -1;
  366. shapeInfo.m_triangleIndex = m_i;
  367. if (r.m_localShapeInfo == NULL)
  368. r.m_localShapeInfo = &shapeInfo;
  369. const btScalar result = m_userCallback->addSingleResult(r, b);
  370. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  371. return result;
  372. }
  373. };
  374. struct RayTester : btDbvt::ICollide
  375. {
  376. const btCollisionObject* m_collisionObject;
  377. const btCompoundShape* m_compoundShape;
  378. const btTransform& m_colObjWorldTransform;
  379. const btTransform& m_rayFromTrans;
  380. const btTransform& m_rayToTrans;
  381. RayResultCallback& m_resultCallback;
  382. RayTester(const btCollisionObject* collisionObject,
  383. const btCompoundShape* compoundShape,
  384. const btTransform& colObjWorldTransform,
  385. const btTransform& rayFromTrans,
  386. const btTransform& rayToTrans,
  387. RayResultCallback& resultCallback):
  388. m_collisionObject(collisionObject),
  389. m_compoundShape(compoundShape),
  390. m_colObjWorldTransform(colObjWorldTransform),
  391. m_rayFromTrans(rayFromTrans),
  392. m_rayToTrans(rayToTrans),
  393. m_resultCallback(resultCallback)
  394. {
  395. }
  396. void ProcessLeaf(int i)
  397. {
  398. const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(i);
  399. const btTransform& childTrans = m_compoundShape->getChildTransform(i);
  400. btTransform childWorldTrans = m_colObjWorldTransform * childTrans;
  401. btCollisionObjectWrapper tmpOb(0,childCollisionShape,m_collisionObject,childWorldTrans);
  402. // replace collision shape so that callback can determine the triangle
  403. LocalInfoAdder2 my_cb(i, &m_resultCallback);
  404. rayTestSingleInternal(
  405. m_rayFromTrans,
  406. m_rayToTrans,
  407. &tmpOb,
  408. my_cb);
  409. }
  410. void Process(const btDbvtNode* leaf)
  411. {
  412. ProcessLeaf(leaf->dataAsInt);
  413. }
  414. };
  415. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  416. const btDbvt* dbvt = compoundShape->getDynamicAabbTree();
  417. RayTester rayCB(
  418. collisionObjectWrap->getCollisionObject(),
  419. compoundShape,
  420. colObjWorldTransform,
  421. rayFromTrans,
  422. rayToTrans,
  423. resultCallback);
  424. #ifndef DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  425. if (dbvt)
  426. {
  427. btVector3 localRayFrom = colObjWorldTransform.inverseTimes(rayFromTrans).getOrigin();
  428. btVector3 localRayTo = colObjWorldTransform.inverseTimes(rayToTrans).getOrigin();
  429. btDbvt::rayTest(dbvt->m_root, localRayFrom , localRayTo, rayCB);
  430. }
  431. else
  432. #endif //DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  433. {
  434. for (int i = 0, n = compoundShape->getNumChildShapes(); i < n; ++i)
  435. {
  436. rayCB.ProcessLeaf(i);
  437. }
  438. }
  439. }
  440. }
  441. }
  442. }
  443. void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
  444. btCollisionObject* collisionObject,
  445. const btCollisionShape* collisionShape,
  446. const btTransform& colObjWorldTransform,
  447. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  448. {
  449. btCollisionObjectWrapper tmpOb(0,collisionShape,collisionObject,colObjWorldTransform);
  450. btCollisionWorld::objectQuerySingleInternal(castShape,convexFromTrans,convexToTrans,&tmpOb,resultCallback,allowedPenetration);
  451. }
  452. void btCollisionWorld::objectQuerySingleInternal(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
  453. const btCollisionObjectWrapper* colObjWrap,
  454. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  455. {
  456. const btCollisionShape* collisionShape = colObjWrap->getCollisionShape();
  457. const btTransform& colObjWorldTransform = colObjWrap->getWorldTransform();
  458. if (collisionShape->isConvex())
  459. {
  460. //BT_PROFILE("convexSweepConvex");
  461. btConvexCast::CastResult castResult;
  462. castResult.m_allowedPenetration = allowedPenetration;
  463. castResult.m_fraction = resultCallback.m_closestHitFraction;//btScalar(1.);//??
  464. btConvexShape* convexShape = (btConvexShape*) collisionShape;
  465. btVoronoiSimplexSolver simplexSolver;
  466. btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver;
  467. btContinuousConvexCollision convexCaster1(castShape,convexShape,&simplexSolver,&gjkEpaPenetrationSolver);
  468. //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver);
  469. //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver);
  470. btConvexCast* castPtr = &convexCaster1;
  471. if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
  472. {
  473. //add hit
  474. if (castResult.m_normal.length2() > btScalar(0.0001))
  475. {
  476. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  477. {
  478. castResult.m_normal.normalize();
  479. btCollisionWorld::LocalConvexResult localConvexResult
  480. (
  481. colObjWrap->getCollisionObject(),
  482. 0,
  483. castResult.m_normal,
  484. castResult.m_hitPoint,
  485. castResult.m_fraction
  486. );
  487. bool normalInWorldSpace = true;
  488. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  489. }
  490. }
  491. }
  492. } else {
  493. if (collisionShape->isConcave())
  494. {
  495. if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
  496. {
  497. //BT_PROFILE("convexSweepbtBvhTriangleMesh");
  498. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  499. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  500. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  501. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  502. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  503. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  504. //ConvexCast::CastResult
  505. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  506. {
  507. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  508. const btCollisionObject* m_collisionObject;
  509. btTriangleMeshShape* m_triangleMesh;
  510. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
  511. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld):
  512. btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
  513. m_resultCallback(resultCallback),
  514. m_collisionObject(collisionObject),
  515. m_triangleMesh(triangleMesh)
  516. {
  517. }
  518. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
  519. {
  520. btCollisionWorld::LocalShapeInfo shapeInfo;
  521. shapeInfo.m_shapePart = partId;
  522. shapeInfo.m_triangleIndex = triangleIndex;
  523. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  524. {
  525. btCollisionWorld::LocalConvexResult convexResult
  526. (m_collisionObject,
  527. &shapeInfo,
  528. hitNormalLocal,
  529. hitPointLocal,
  530. hitFraction);
  531. bool normalInWorldSpace = true;
  532. return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
  533. }
  534. return hitFraction;
  535. }
  536. };
  537. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,colObjWrap->getCollisionObject(),triangleMesh, colObjWorldTransform);
  538. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  539. tccb.m_allowedPenetration = allowedPenetration;
  540. btVector3 boxMinLocal, boxMaxLocal;
  541. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  542. triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal);
  543. } else
  544. {
  545. if (collisionShape->getShapeType()==STATIC_PLANE_PROXYTYPE)
  546. {
  547. btConvexCast::CastResult castResult;
  548. castResult.m_allowedPenetration = allowedPenetration;
  549. castResult.m_fraction = resultCallback.m_closestHitFraction;
  550. btStaticPlaneShape* planeShape = (btStaticPlaneShape*) collisionShape;
  551. btContinuousConvexCollision convexCaster1(castShape,planeShape);
  552. btConvexCast* castPtr = &convexCaster1;
  553. if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
  554. {
  555. //add hit
  556. if (castResult.m_normal.length2() > btScalar(0.0001))
  557. {
  558. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  559. {
  560. castResult.m_normal.normalize();
  561. btCollisionWorld::LocalConvexResult localConvexResult
  562. (
  563. colObjWrap->getCollisionObject(),
  564. 0,
  565. castResult.m_normal,
  566. castResult.m_hitPoint,
  567. castResult.m_fraction
  568. );
  569. bool normalInWorldSpace = true;
  570. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  571. }
  572. }
  573. }
  574. } else
  575. {
  576. //BT_PROFILE("convexSweepConcave");
  577. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  578. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  579. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  580. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  581. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  582. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  583. //ConvexCast::CastResult
  584. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  585. {
  586. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  587. const btCollisionObject* m_collisionObject;
  588. btConcaveShape* m_triangleMesh;
  589. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
  590. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& triangleToWorld):
  591. btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
  592. m_resultCallback(resultCallback),
  593. m_collisionObject(collisionObject),
  594. m_triangleMesh(triangleMesh)
  595. {
  596. }
  597. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
  598. {
  599. btCollisionWorld::LocalShapeInfo shapeInfo;
  600. shapeInfo.m_shapePart = partId;
  601. shapeInfo.m_triangleIndex = triangleIndex;
  602. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  603. {
  604. btCollisionWorld::LocalConvexResult convexResult
  605. (m_collisionObject,
  606. &shapeInfo,
  607. hitNormalLocal,
  608. hitPointLocal,
  609. hitFraction);
  610. bool normalInWorldSpace = false;
  611. return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
  612. }
  613. return hitFraction;
  614. }
  615. };
  616. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,colObjWrap->getCollisionObject(),concaveShape, colObjWorldTransform);
  617. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  618. tccb.m_allowedPenetration = allowedPenetration;
  619. btVector3 boxMinLocal, boxMaxLocal;
  620. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  621. btVector3 rayAabbMinLocal = convexFromLocal;
  622. rayAabbMinLocal.setMin(convexToLocal);
  623. btVector3 rayAabbMaxLocal = convexFromLocal;
  624. rayAabbMaxLocal.setMax(convexToLocal);
  625. rayAabbMinLocal += boxMinLocal;
  626. rayAabbMaxLocal += boxMaxLocal;
  627. concaveShape->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal);
  628. }
  629. }
  630. } else {
  631. ///@todo : use AABB tree or other BVH acceleration structure!
  632. if (collisionShape->isCompound())
  633. {
  634. BT_PROFILE("convexSweepCompound");
  635. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  636. int i=0;
  637. for (i=0;i<compoundShape->getNumChildShapes();i++)
  638. {
  639. btTransform childTrans = compoundShape->getChildTransform(i);
  640. const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
  641. btTransform childWorldTrans = colObjWorldTransform * childTrans;
  642. struct LocalInfoAdder : public ConvexResultCallback {
  643. ConvexResultCallback* m_userCallback;
  644. int m_i;
  645. LocalInfoAdder (int i, ConvexResultCallback *user)
  646. : m_userCallback(user), m_i(i)
  647. {
  648. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  649. }
  650. virtual bool needsCollision(btBroadphaseProxy* p) const
  651. {
  652. return m_userCallback->needsCollision(p);
  653. }
  654. virtual btScalar addSingleResult (btCollisionWorld::LocalConvexResult& r, bool b)
  655. {
  656. btCollisionWorld::LocalShapeInfo shapeInfo;
  657. shapeInfo.m_shapePart = -1;
  658. shapeInfo.m_triangleIndex = m_i;
  659. if (r.m_localShapeInfo == NULL)
  660. r.m_localShapeInfo = &shapeInfo;
  661. const btScalar result = m_userCallback->addSingleResult(r, b);
  662. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  663. return result;
  664. }
  665. };
  666. LocalInfoAdder my_cb(i, &resultCallback);
  667. btCollisionObjectWrapper tmpObj(colObjWrap,childCollisionShape,colObjWrap->getCollisionObject(),childWorldTrans);
  668. objectQuerySingleInternal(castShape, convexFromTrans,convexToTrans,
  669. &tmpObj,my_cb, allowedPenetration);
  670. }
  671. }
  672. }
  673. }
  674. }
  675. struct btSingleRayCallback : public btBroadphaseRayCallback
  676. {
  677. btVector3 m_rayFromWorld;
  678. btVector3 m_rayToWorld;
  679. btTransform m_rayFromTrans;
  680. btTransform m_rayToTrans;
  681. btVector3 m_hitNormal;
  682. const btCollisionWorld* m_world;
  683. btCollisionWorld::RayResultCallback& m_resultCallback;
  684. btSingleRayCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld,const btCollisionWorld* world,btCollisionWorld::RayResultCallback& resultCallback)
  685. :m_rayFromWorld(rayFromWorld),
  686. m_rayToWorld(rayToWorld),
  687. m_world(world),
  688. m_resultCallback(resultCallback)
  689. {
  690. m_rayFromTrans.setIdentity();
  691. m_rayFromTrans.setOrigin(m_rayFromWorld);
  692. m_rayToTrans.setIdentity();
  693. m_rayToTrans.setOrigin(m_rayToWorld);
  694. btVector3 rayDir = (rayToWorld-rayFromWorld);
  695. rayDir.normalize ();
  696. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  697. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  698. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  699. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  700. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  701. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  702. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  703. m_lambda_max = rayDir.dot(m_rayToWorld-m_rayFromWorld);
  704. }
  705. virtual bool process(const btBroadphaseProxy* proxy)
  706. {
  707. ///terminate further ray tests, once the closestHitFraction reached zero
  708. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  709. return false;
  710. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  711. //only perform raycast if filterMask matches
  712. if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  713. {
  714. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  715. //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  716. #if 0
  717. #ifdef RECALCULATE_AABB
  718. btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  719. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
  720. #else
  721. //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
  722. const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
  723. const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
  724. #endif
  725. #endif
  726. //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
  727. //culling already done by broadphase
  728. //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
  729. {
  730. m_world->rayTestSingle(m_rayFromTrans,m_rayToTrans,
  731. collisionObject,
  732. collisionObject->getCollisionShape(),
  733. collisionObject->getWorldTransform(),
  734. m_resultCallback);
  735. }
  736. }
  737. return true;
  738. }
  739. };
  740. void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
  741. {
  742. //BT_PROFILE("rayTest");
  743. /// use the broadphase to accelerate the search for objects, based on their aabb
  744. /// and for each object with ray-aabb overlap, perform an exact ray test
  745. btSingleRayCallback rayCB(rayFromWorld,rayToWorld,this,resultCallback);
  746. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  747. m_broadphasePairCache->rayTest(rayFromWorld,rayToWorld,rayCB);
  748. #else
  749. for (int i=0;i<this->getNumCollisionObjects();i++)
  750. {
  751. rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
  752. }
  753. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  754. }
  755. struct btSingleSweepCallback : public btBroadphaseRayCallback
  756. {
  757. btTransform m_convexFromTrans;
  758. btTransform m_convexToTrans;
  759. btVector3 m_hitNormal;
  760. const btCollisionWorld* m_world;
  761. btCollisionWorld::ConvexResultCallback& m_resultCallback;
  762. btScalar m_allowedCcdPenetration;
  763. const btConvexShape* m_castShape;
  764. btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans,const btTransform& convexToTrans,const btCollisionWorld* world,btCollisionWorld::ConvexResultCallback& resultCallback,btScalar allowedPenetration)
  765. :m_convexFromTrans(convexFromTrans),
  766. m_convexToTrans(convexToTrans),
  767. m_world(world),
  768. m_resultCallback(resultCallback),
  769. m_allowedCcdPenetration(allowedPenetration),
  770. m_castShape(castShape)
  771. {
  772. btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin()-m_convexFromTrans.getOrigin());
  773. btVector3 rayDir = unnormalizedRayDir.normalized();
  774. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  775. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  776. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  777. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  778. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  779. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  780. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  781. m_lambda_max = rayDir.dot(unnormalizedRayDir);
  782. }
  783. virtual bool process(const btBroadphaseProxy* proxy)
  784. {
  785. ///terminate further convex sweep tests, once the closestHitFraction reached zero
  786. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  787. return false;
  788. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  789. //only perform raycast if filterMask matches
  790. if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
  791. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  792. m_world->objectQuerySingle(m_castShape, m_convexFromTrans,m_convexToTrans,
  793. collisionObject,
  794. collisionObject->getCollisionShape(),
  795. collisionObject->getWorldTransform(),
  796. m_resultCallback,
  797. m_allowedCcdPenetration);
  798. }
  799. return true;
  800. }
  801. };
  802. void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
  803. {
  804. BT_PROFILE("convexSweepTest");
  805. /// use the broadphase to accelerate the search for objects, based on their aabb
  806. /// and for each object with ray-aabb overlap, perform an exact ray test
  807. /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical
  808. btTransform convexFromTrans,convexToTrans;
  809. convexFromTrans = convexFromWorld;
  810. convexToTrans = convexToWorld;
  811. btVector3 castShapeAabbMin, castShapeAabbMax;
  812. /* Compute AABB that encompasses angular movement */
  813. {
  814. btVector3 linVel, angVel;
  815. btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0f, linVel, angVel);
  816. btVector3 zeroLinVel;
  817. zeroLinVel.setValue(0,0,0);
  818. btTransform R;
  819. R.setIdentity ();
  820. R.setRotation (convexFromTrans.getRotation());
  821. castShape->calculateTemporalAabb (R, zeroLinVel, angVel, 1.0f, castShapeAabbMin, castShapeAabbMax);
  822. }
  823. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  824. btSingleSweepCallback convexCB(castShape,convexFromWorld,convexToWorld,this,resultCallback,allowedCcdPenetration);
  825. m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(),convexToTrans.getOrigin(),convexCB,castShapeAabbMin,castShapeAabbMax);
  826. #else
  827. /// go over all objects, and if the ray intersects their aabb + cast shape aabb,
  828. // do a ray-shape query using convexCaster (CCD)
  829. int i;
  830. for (i=0;i<m_collisionObjects.size();i++)
  831. {
  832. btCollisionObject* collisionObject= m_collisionObjects[i];
  833. //only perform raycast if filterMask matches
  834. if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
  835. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  836. btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  837. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
  838. AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
  839. btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
  840. btVector3 hitNormal;
  841. if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
  842. {
  843. objectQuerySingle(castShape, convexFromTrans,convexToTrans,
  844. collisionObject,
  845. collisionObject->getCollisionShape(),
  846. collisionObject->getWorldTransform(),
  847. resultCallback,
  848. allowedCcdPenetration);
  849. }
  850. }
  851. }
  852. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  853. }
  854. struct btBridgedManifoldResult : public btManifoldResult
  855. {
  856. btCollisionWorld::ContactResultCallback& m_resultCallback;
  857. btBridgedManifoldResult( const btCollisionObjectWrapper* obj0Wrap,const btCollisionObjectWrapper* obj1Wrap,btCollisionWorld::ContactResultCallback& resultCallback )
  858. :btManifoldResult(obj0Wrap,obj1Wrap),
  859. m_resultCallback(resultCallback)
  860. {
  861. }
  862. virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
  863. {
  864. bool isSwapped = m_manifoldPtr->getBody0() != m_body0Wrap->getCollisionObject();
  865. btVector3 pointA = pointInWorld + normalOnBInWorld * depth;
  866. btVector3 localA;
  867. btVector3 localB;
  868. if (isSwapped)
  869. {
  870. localA = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointA );
  871. localB = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  872. } else
  873. {
  874. localA = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointA );
  875. localB = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  876. }
  877. btManifoldPoint newPt(localA,localB,normalOnBInWorld,depth);
  878. newPt.m_positionWorldOnA = pointA;
  879. newPt.m_positionWorldOnB = pointInWorld;
  880. //BP mod, store contact triangles.
  881. if (isSwapped)
  882. {
  883. newPt.m_partId0 = m_partId1;
  884. newPt.m_partId1 = m_partId0;
  885. newPt.m_index0 = m_index1;
  886. newPt.m_index1 = m_index0;
  887. } else
  888. {
  889. newPt.m_partId0 = m_partId0;
  890. newPt.m_partId1 = m_partId1;
  891. newPt.m_index0 = m_index0;
  892. newPt.m_index1 = m_index1;
  893. }
  894. //experimental feature info, for per-triangle material etc.
  895. const btCollisionObjectWrapper* obj0Wrap = isSwapped? m_body1Wrap : m_body0Wrap;
  896. const btCollisionObjectWrapper* obj1Wrap = isSwapped? m_body0Wrap : m_body1Wrap;
  897. m_resultCallback.addSingleResult(newPt,obj0Wrap,newPt.m_partId0,newPt.m_index0,obj1Wrap,newPt.m_partId1,newPt.m_index1);
  898. }
  899. };
  900. struct btSingleContactCallback : public btBroadphaseAabbCallback
  901. {
  902. btCollisionObject* m_collisionObject;
  903. btCollisionWorld* m_world;
  904. btCollisionWorld::ContactResultCallback& m_resultCallback;
  905. btSingleContactCallback(btCollisionObject* collisionObject, btCollisionWorld* world,btCollisionWorld::ContactResultCallback& resultCallback)
  906. :m_collisionObject(collisionObject),
  907. m_world(world),
  908. m_resultCallback(resultCallback)
  909. {
  910. }
  911. virtual bool process(const btBroadphaseProxy* proxy)
  912. {
  913. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  914. if (collisionObject == m_collisionObject)
  915. return true;
  916. //only perform raycast if filterMask matches
  917. if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  918. {
  919. btCollisionObjectWrapper ob0(0,m_collisionObject->getCollisionShape(),m_collisionObject,m_collisionObject->getWorldTransform());
  920. btCollisionObjectWrapper ob1(0,collisionObject->getCollisionShape(),collisionObject,collisionObject->getWorldTransform());
  921. btCollisionAlgorithm* algorithm = m_world->getDispatcher()->findAlgorithm(&ob0,&ob1);
  922. if (algorithm)
  923. {
  924. btBridgedManifoldResult contactPointResult(&ob0,&ob1, m_resultCallback);
  925. //discrete collision detection query
  926. algorithm->processCollision(&ob0,&ob1, m_world->getDispatchInfo(),&contactPointResult);
  927. algorithm->~btCollisionAlgorithm();
  928. m_world->getDispatcher()->freeCollisionAlgorithm(algorithm);
  929. }
  930. }
  931. return true;
  932. }
  933. };
  934. ///contactTest performs a discrete collision test against all objects in the btCollisionWorld, and calls the resultCallback.
  935. ///it reports one or more contact points for every overlapping object (including the one with deepest penetration)
  936. void btCollisionWorld::contactTest( btCollisionObject* colObj, ContactResultCallback& resultCallback)
  937. {
  938. btVector3 aabbMin,aabbMax;
  939. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(),aabbMin,aabbMax);
  940. btSingleContactCallback contactCB(colObj,this,resultCallback);
  941. m_broadphasePairCache->aabbTest(aabbMin,aabbMax,contactCB);
  942. }
  943. ///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected.
  944. ///it reports one or more contact points (including the one with deepest penetration)
  945. void btCollisionWorld::contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback)
  946. {
  947. btCollisionObjectWrapper obA(0,colObjA->getCollisionShape(),colObjA,colObjA->getWorldTransform());
  948. btCollisionObjectWrapper obB(0,colObjB->getCollisionShape(),colObjB,colObjB->getWorldTransform());
  949. btCollisionAlgorithm* algorithm = getDispatcher()->findAlgorithm(&obA,&obB);
  950. if (algorithm)
  951. {
  952. btBridgedManifoldResult contactPointResult(&obA,&obB, resultCallback);
  953. //discrete collision detection query
  954. algorithm->processCollision(&obA,&obB, getDispatchInfo(),&contactPointResult);
  955. algorithm->~btCollisionAlgorithm();
  956. getDispatcher()->freeCollisionAlgorithm(algorithm);
  957. }
  958. }
  959. class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback
  960. {
  961. btIDebugDraw* m_debugDrawer;
  962. btVector3 m_color;
  963. btTransform m_worldTrans;
  964. public:
  965. DebugDrawcallback(btIDebugDraw* debugDrawer,const btTransform& worldTrans,const btVector3& color) :
  966. m_debugDrawer(debugDrawer),
  967. m_color(color),
  968. m_worldTrans(worldTrans)
  969. {
  970. }
  971. virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
  972. {
  973. processTriangle(triangle,partId,triangleIndex);
  974. }
  975. virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex)
  976. {
  977. (void)partId;
  978. (void)triangleIndex;
  979. btVector3 wv0,wv1,wv2;
  980. wv0 = m_worldTrans*triangle[0];
  981. wv1 = m_worldTrans*triangle[1];
  982. wv2 = m_worldTrans*triangle[2];
  983. btVector3 center = (wv0+wv1+wv2)*btScalar(1./3.);
  984. if (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawNormals )
  985. {
  986. btVector3 normal = (wv1-wv0).cross(wv2-wv0);
  987. normal.normalize();
  988. btVector3 normalColor(1,1,0);
  989. m_debugDrawer->drawLine(center,center+normal,normalColor);
  990. }
  991. m_debugDrawer->drawLine(wv0,wv1,m_color);
  992. m_debugDrawer->drawLine(wv1,wv2,m_color);
  993. m_debugDrawer->drawLine(wv2,wv0,m_color);
  994. }
  995. };
  996. void btCollisionWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
  997. {
  998. // Draw a small simplex at the center of the object
  999. getDebugDrawer()->drawTransform(worldTransform,1);
  1000. if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
  1001. {
  1002. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
  1003. for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--)
  1004. {
  1005. btTransform childTrans = compoundShape->getChildTransform(i);
  1006. const btCollisionShape* colShape = compoundShape->getChildShape(i);
  1007. debugDrawObject(worldTransform*childTrans,colShape,color);
  1008. }
  1009. } else
  1010. {
  1011. switch (shape->getShapeType())
  1012. {
  1013. case BOX_SHAPE_PROXYTYPE:
  1014. {
  1015. const btBoxShape* boxShape = static_cast<const btBoxShape*>(shape);
  1016. btVector3 halfExtents = boxShape->getHalfExtentsWithMargin();
  1017. getDebugDrawer()->drawBox(-halfExtents,halfExtents,worldTransform,color);
  1018. break;
  1019. }
  1020. case SPHERE_SHAPE_PROXYTYPE:
  1021. {
  1022. const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape);
  1023. btScalar radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin
  1024. getDebugDrawer()->drawSphere(radius, worldTransform, color);
  1025. break;
  1026. }
  1027. case MULTI_SPHERE_SHAPE_PROXYTYPE:
  1028. {
  1029. const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape);
  1030. btTransform childTransform;
  1031. childTransform.setIdentity();
  1032. for (int i = multiSphereShape->getSphereCount()-1; i>=0;i--)
  1033. {
  1034. childTransform.setOrigin(multiSphereShape->getSpherePosition(i));
  1035. getDebugDrawer()->drawSphere(multiSphereShape->getSphereRadius(i), worldTransform*childTransform, color);
  1036. }
  1037. break;
  1038. }
  1039. case CAPSULE_SHAPE_PROXYTYPE:
  1040. {
  1041. const btCapsuleShape* capsuleShape = static_cast<const btCapsuleShape*>(shape);
  1042. btScalar radius = capsuleShape->getRadius();
  1043. btScalar halfHeight = capsuleShape->getHalfHeight();
  1044. int upAxis = capsuleShape->getUpAxis();
  1045. getDebugDrawer()->drawCapsule(radius, halfHeight, upAxis, worldTransform, color);
  1046. break;
  1047. }
  1048. case CONE_SHAPE_PROXYTYPE:
  1049. {
  1050. const btConeShape* coneShape = static_cast<const btConeShape*>(shape);
  1051. btScalar radius = coneShape->getRadius();//+coneShape->getMargin();
  1052. btScalar height = coneShape->getHeight();//+coneShape->getMargin();
  1053. int upAxis= coneShape->getConeUpIndex();
  1054. getDebugDrawer()->drawCone(radius, height, upAxis, worldTransform, color);
  1055. break;
  1056. }
  1057. case CYLINDER_SHAPE_PROXYTYPE:
  1058. {
  1059. const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape);
  1060. int upAxis = cylinder->getUpAxis();
  1061. btScalar radius = cylinder->getRadius();
  1062. btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis];
  1063. getDebugDrawer()->drawCylinder(radius, halfHeight, upAxis, worldTransform, color);
  1064. break;
  1065. }
  1066. case STATIC_PLANE_PROXYTYPE:
  1067. {
  1068. const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(shape);
  1069. btScalar planeConst = staticPlaneShape->getPlaneConstant();
  1070. const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
  1071. getDebugDrawer()->drawPlane(planeNormal, planeConst,worldTransform, color);
  1072. break;
  1073. }
  1074. default:
  1075. {
  1076. /// for polyhedral shapes
  1077. if (shape->isPolyhedral())
  1078. {
  1079. btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*) shape;
  1080. int i;
  1081. if (polyshape->getConvexPolyhedron())
  1082. {
  1083. const btConvexPolyhedron* poly = polyshape->getConvexPolyhedron();
  1084. for (i=0;i<poly->m_faces.size();i++)
  1085. {
  1086. btVector3 centroid(0,0,0);
  1087. int numVerts = poly->m_faces[i].m_indices.size();
  1088. if (numVerts)
  1089. {
  1090. int lastV = poly->m_faces[i].m_indices[numVerts-1];
  1091. for (int v=0;v<poly->m_faces[i].m_indices.size();v++)
  1092. {
  1093. int curVert = poly->m_faces[i].m_indices[v];