PageRenderTime 43ms CodeModel.GetById 15ms RepoModel.GetById 1ms app.codeStats 0ms

/arch/x86/power/cpu.c

https://gitlab.com/kush/linux
C | 455 lines | 261 code | 51 blank | 143 comment | 15 complexity | 793c54aac19b4f95042f9d8073a23323 MD5 | raw file
  1. /*
  2. * Suspend support specific for i386/x86-64.
  3. *
  4. * Distribute under GPLv2
  5. *
  6. * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  7. * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  8. * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  9. */
  10. #include <linux/suspend.h>
  11. #include <linux/export.h>
  12. #include <linux/smp.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/tboot.h>
  15. #include <asm/pgtable.h>
  16. #include <asm/proto.h>
  17. #include <asm/mtrr.h>
  18. #include <asm/page.h>
  19. #include <asm/mce.h>
  20. #include <asm/suspend.h>
  21. #include <asm/fpu/internal.h>
  22. #include <asm/debugreg.h>
  23. #include <asm/cpu.h>
  24. #include <asm/mmu_context.h>
  25. #include <linux/dmi.h>
  26. #ifdef CONFIG_X86_32
  27. __visible unsigned long saved_context_ebx;
  28. __visible unsigned long saved_context_esp, saved_context_ebp;
  29. __visible unsigned long saved_context_esi, saved_context_edi;
  30. __visible unsigned long saved_context_eflags;
  31. #endif
  32. struct saved_context saved_context;
  33. static void msr_save_context(struct saved_context *ctxt)
  34. {
  35. struct saved_msr *msr = ctxt->saved_msrs.array;
  36. struct saved_msr *end = msr + ctxt->saved_msrs.num;
  37. while (msr < end) {
  38. msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
  39. msr++;
  40. }
  41. }
  42. static void msr_restore_context(struct saved_context *ctxt)
  43. {
  44. struct saved_msr *msr = ctxt->saved_msrs.array;
  45. struct saved_msr *end = msr + ctxt->saved_msrs.num;
  46. while (msr < end) {
  47. if (msr->valid)
  48. wrmsrl(msr->info.msr_no, msr->info.reg.q);
  49. msr++;
  50. }
  51. }
  52. /**
  53. * __save_processor_state - save CPU registers before creating a
  54. * hibernation image and before restoring the memory state from it
  55. * @ctxt - structure to store the registers contents in
  56. *
  57. * NOTE: If there is a CPU register the modification of which by the
  58. * boot kernel (ie. the kernel used for loading the hibernation image)
  59. * might affect the operations of the restored target kernel (ie. the one
  60. * saved in the hibernation image), then its contents must be saved by this
  61. * function. In other words, if kernel A is hibernated and different
  62. * kernel B is used for loading the hibernation image into memory, the
  63. * kernel A's __save_processor_state() function must save all registers
  64. * needed by kernel A, so that it can operate correctly after the resume
  65. * regardless of what kernel B does in the meantime.
  66. */
  67. static void __save_processor_state(struct saved_context *ctxt)
  68. {
  69. #ifdef CONFIG_X86_32
  70. mtrr_save_fixed_ranges(NULL);
  71. #endif
  72. kernel_fpu_begin();
  73. /*
  74. * descriptor tables
  75. */
  76. store_idt(&ctxt->idt);
  77. /*
  78. * We save it here, but restore it only in the hibernate case.
  79. * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
  80. * mode in "secondary_startup_64". In 32-bit mode it is done via
  81. * 'pmode_gdt' in wakeup_start.
  82. */
  83. ctxt->gdt_desc.size = GDT_SIZE - 1;
  84. ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
  85. store_tr(ctxt->tr);
  86. /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
  87. /*
  88. * segment registers
  89. */
  90. #ifdef CONFIG_X86_32_LAZY_GS
  91. savesegment(gs, ctxt->gs);
  92. #endif
  93. #ifdef CONFIG_X86_64
  94. savesegment(gs, ctxt->gs);
  95. savesegment(fs, ctxt->fs);
  96. savesegment(ds, ctxt->ds);
  97. savesegment(es, ctxt->es);
  98. rdmsrl(MSR_FS_BASE, ctxt->fs_base);
  99. rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
  100. rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
  101. mtrr_save_fixed_ranges(NULL);
  102. rdmsrl(MSR_EFER, ctxt->efer);
  103. #endif
  104. /*
  105. * control registers
  106. */
  107. ctxt->cr0 = read_cr0();
  108. ctxt->cr2 = read_cr2();
  109. ctxt->cr3 = __read_cr3();
  110. ctxt->cr4 = __read_cr4();
  111. #ifdef CONFIG_X86_64
  112. ctxt->cr8 = read_cr8();
  113. #endif
  114. ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
  115. &ctxt->misc_enable);
  116. msr_save_context(ctxt);
  117. }
  118. /* Needed by apm.c */
  119. void save_processor_state(void)
  120. {
  121. __save_processor_state(&saved_context);
  122. x86_platform.save_sched_clock_state();
  123. }
  124. #ifdef CONFIG_X86_32
  125. EXPORT_SYMBOL(save_processor_state);
  126. #endif
  127. static void do_fpu_end(void)
  128. {
  129. /*
  130. * Restore FPU regs if necessary.
  131. */
  132. kernel_fpu_end();
  133. }
  134. static void fix_processor_context(void)
  135. {
  136. int cpu = smp_processor_id();
  137. #ifdef CONFIG_X86_64
  138. struct desc_struct *desc = get_cpu_gdt_rw(cpu);
  139. tss_desc tss;
  140. #endif
  141. /*
  142. * We need to reload TR, which requires that we change the
  143. * GDT entry to indicate "available" first.
  144. *
  145. * XXX: This could probably all be replaced by a call to
  146. * force_reload_TR().
  147. */
  148. set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
  149. #ifdef CONFIG_X86_64
  150. memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
  151. tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
  152. write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
  153. syscall_init(); /* This sets MSR_*STAR and related */
  154. #else
  155. if (boot_cpu_has(X86_FEATURE_SEP))
  156. enable_sep_cpu();
  157. #endif
  158. load_TR_desc(); /* This does ltr */
  159. load_mm_ldt(current->active_mm); /* This does lldt */
  160. initialize_tlbstate_and_flush();
  161. fpu__resume_cpu();
  162. /* The processor is back on the direct GDT, load back the fixmap */
  163. load_fixmap_gdt(cpu);
  164. }
  165. /**
  166. * __restore_processor_state - restore the contents of CPU registers saved
  167. * by __save_processor_state()
  168. * @ctxt - structure to load the registers contents from
  169. *
  170. * The asm code that gets us here will have restored a usable GDT, although
  171. * it will be pointing to the wrong alias.
  172. */
  173. static void notrace __restore_processor_state(struct saved_context *ctxt)
  174. {
  175. if (ctxt->misc_enable_saved)
  176. wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
  177. /*
  178. * control registers
  179. */
  180. /* cr4 was introduced in the Pentium CPU */
  181. #ifdef CONFIG_X86_32
  182. if (ctxt->cr4)
  183. __write_cr4(ctxt->cr4);
  184. #else
  185. /* CONFIG X86_64 */
  186. wrmsrl(MSR_EFER, ctxt->efer);
  187. write_cr8(ctxt->cr8);
  188. __write_cr4(ctxt->cr4);
  189. #endif
  190. write_cr3(ctxt->cr3);
  191. write_cr2(ctxt->cr2);
  192. write_cr0(ctxt->cr0);
  193. /* Restore the IDT. */
  194. load_idt(&ctxt->idt);
  195. /*
  196. * Just in case the asm code got us here with the SS, DS, or ES
  197. * out of sync with the GDT, update them.
  198. */
  199. loadsegment(ss, __KERNEL_DS);
  200. loadsegment(ds, __USER_DS);
  201. loadsegment(es, __USER_DS);
  202. /*
  203. * Restore percpu access. Percpu access can happen in exception
  204. * handlers or in complicated helpers like load_gs_index().
  205. */
  206. #ifdef CONFIG_X86_64
  207. wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
  208. #else
  209. loadsegment(fs, __KERNEL_PERCPU);
  210. loadsegment(gs, __KERNEL_STACK_CANARY);
  211. #endif
  212. /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
  213. fix_processor_context();
  214. /*
  215. * Now that we have descriptor tables fully restored and working
  216. * exception handling, restore the usermode segments.
  217. */
  218. #ifdef CONFIG_X86_64
  219. loadsegment(ds, ctxt->es);
  220. loadsegment(es, ctxt->es);
  221. loadsegment(fs, ctxt->fs);
  222. load_gs_index(ctxt->gs);
  223. /*
  224. * Restore FSBASE and GSBASE after restoring the selectors, since
  225. * restoring the selectors clobbers the bases. Keep in mind
  226. * that MSR_KERNEL_GS_BASE is horribly misnamed.
  227. */
  228. wrmsrl(MSR_FS_BASE, ctxt->fs_base);
  229. wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
  230. #elif defined(CONFIG_X86_32_LAZY_GS)
  231. loadsegment(gs, ctxt->gs);
  232. #endif
  233. do_fpu_end();
  234. tsc_verify_tsc_adjust(true);
  235. x86_platform.restore_sched_clock_state();
  236. mtrr_bp_restore();
  237. perf_restore_debug_store();
  238. msr_restore_context(ctxt);
  239. }
  240. /* Needed by apm.c */
  241. void notrace restore_processor_state(void)
  242. {
  243. __restore_processor_state(&saved_context);
  244. }
  245. #ifdef CONFIG_X86_32
  246. EXPORT_SYMBOL(restore_processor_state);
  247. #endif
  248. #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
  249. static void resume_play_dead(void)
  250. {
  251. play_dead_common();
  252. tboot_shutdown(TB_SHUTDOWN_WFS);
  253. hlt_play_dead();
  254. }
  255. int hibernate_resume_nonboot_cpu_disable(void)
  256. {
  257. void (*play_dead)(void) = smp_ops.play_dead;
  258. int ret;
  259. /*
  260. * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
  261. * during hibernate image restoration, because it is likely that the
  262. * monitored address will be actually written to at that time and then
  263. * the "dead" CPU will attempt to execute instructions again, but the
  264. * address in its instruction pointer may not be possible to resolve
  265. * any more at that point (the page tables used by it previously may
  266. * have been overwritten by hibernate image data).
  267. */
  268. smp_ops.play_dead = resume_play_dead;
  269. ret = disable_nonboot_cpus();
  270. smp_ops.play_dead = play_dead;
  271. return ret;
  272. }
  273. #endif
  274. /*
  275. * When bsp_check() is called in hibernate and suspend, cpu hotplug
  276. * is disabled already. So it's unnessary to handle race condition between
  277. * cpumask query and cpu hotplug.
  278. */
  279. static int bsp_check(void)
  280. {
  281. if (cpumask_first(cpu_online_mask) != 0) {
  282. pr_warn("CPU0 is offline.\n");
  283. return -ENODEV;
  284. }
  285. return 0;
  286. }
  287. static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
  288. void *ptr)
  289. {
  290. int ret = 0;
  291. switch (action) {
  292. case PM_SUSPEND_PREPARE:
  293. case PM_HIBERNATION_PREPARE:
  294. ret = bsp_check();
  295. break;
  296. #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
  297. case PM_RESTORE_PREPARE:
  298. /*
  299. * When system resumes from hibernation, online CPU0 because
  300. * 1. it's required for resume and
  301. * 2. the CPU was online before hibernation
  302. */
  303. if (!cpu_online(0))
  304. _debug_hotplug_cpu(0, 1);
  305. break;
  306. case PM_POST_RESTORE:
  307. /*
  308. * When a resume really happens, this code won't be called.
  309. *
  310. * This code is called only when user space hibernation software
  311. * prepares for snapshot device during boot time. So we just
  312. * call _debug_hotplug_cpu() to restore to CPU0's state prior to
  313. * preparing the snapshot device.
  314. *
  315. * This works for normal boot case in our CPU0 hotplug debug
  316. * mode, i.e. CPU0 is offline and user mode hibernation
  317. * software initializes during boot time.
  318. *
  319. * If CPU0 is online and user application accesses snapshot
  320. * device after boot time, this will offline CPU0 and user may
  321. * see different CPU0 state before and after accessing
  322. * the snapshot device. But hopefully this is not a case when
  323. * user debugging CPU0 hotplug. Even if users hit this case,
  324. * they can easily online CPU0 back.
  325. *
  326. * To simplify this debug code, we only consider normal boot
  327. * case. Otherwise we need to remember CPU0's state and restore
  328. * to that state and resolve racy conditions etc.
  329. */
  330. _debug_hotplug_cpu(0, 0);
  331. break;
  332. #endif
  333. default:
  334. break;
  335. }
  336. return notifier_from_errno(ret);
  337. }
  338. static int __init bsp_pm_check_init(void)
  339. {
  340. /*
  341. * Set this bsp_pm_callback as lower priority than
  342. * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
  343. * earlier to disable cpu hotplug before bsp online check.
  344. */
  345. pm_notifier(bsp_pm_callback, -INT_MAX);
  346. return 0;
  347. }
  348. core_initcall(bsp_pm_check_init);
  349. static int msr_init_context(const u32 *msr_id, const int total_num)
  350. {
  351. int i = 0;
  352. struct saved_msr *msr_array;
  353. if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
  354. pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
  355. return -EINVAL;
  356. }
  357. msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
  358. if (!msr_array) {
  359. pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
  360. return -ENOMEM;
  361. }
  362. for (i = 0; i < total_num; i++) {
  363. msr_array[i].info.msr_no = msr_id[i];
  364. msr_array[i].valid = false;
  365. msr_array[i].info.reg.q = 0;
  366. }
  367. saved_context.saved_msrs.num = total_num;
  368. saved_context.saved_msrs.array = msr_array;
  369. return 0;
  370. }
  371. /*
  372. * The following section is a quirk framework for problematic BIOSen:
  373. * Sometimes MSRs are modified by the BIOSen after suspended to
  374. * RAM, this might cause unexpected behavior after wakeup.
  375. * Thus we save/restore these specified MSRs across suspend/resume
  376. * in order to work around it.
  377. *
  378. * For any further problematic BIOSen/platforms,
  379. * please add your own function similar to msr_initialize_bdw.
  380. */
  381. static int msr_initialize_bdw(const struct dmi_system_id *d)
  382. {
  383. /* Add any extra MSR ids into this array. */
  384. u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
  385. pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
  386. return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
  387. }
  388. static const struct dmi_system_id msr_save_dmi_table[] = {
  389. {
  390. .callback = msr_initialize_bdw,
  391. .ident = "BROADWELL BDX_EP",
  392. .matches = {
  393. DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
  394. DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
  395. },
  396. },
  397. {}
  398. };
  399. static int pm_check_save_msr(void)
  400. {
  401. dmi_check_system(msr_save_dmi_table);
  402. return 0;
  403. }
  404. device_initcall(pm_check_save_msr);