/examples/opencv/src/image.cpp
C++ | 109 lines | 74 code | 15 blank | 20 comment | 7 complexity | 35a2427d52078ab161c939df2cf35674 MD5 | raw file
- #include "cv.h" // include standard OpenCV headers, same as before
- #include "highgui.h"
- using namespace cv; // all the new API is put into "cv" namespace. Export its content
- // enable/disable use of mixed API in the code below.
- #define DEMO_MIXED_API_USE 1
- int main( int argc, char** argv )
- {
- const char* imagename = argc > 1 ? argv[1] : "lena.jpg";
- #if DEMO_MIXED_API_USE
- Ptr<IplImage> iplimg = cvLoadImage(imagename); // Ptr<T> is safe ref-conting pointer class
- if(iplimg.empty())
- {
- fprintf(stderr, "Can not load image %s\n", imagename);
- return -1;
- }
- Mat img(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert
- // between the old and the new data structures (by default, only the header
- // is converted, while the data is shared)
- #else
- Mat img = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
- if(img.empty())
- {
- fprintf(stderr, "Can not load image %s\n", imagename);
- return -1;
- }
- #endif
-
- if( !img.data ) // check if the image has been loaded properly
- return -1;
-
- Mat img_yuv;
- cvtColor(img, img_yuv, CV_BGR2YCrCb); // convert image to YUV color space. The output image will be created automatically
-
- vector<Mat> planes; // Vector is template vector class, similar to STL's vector. It can store matrices too.
- split(img_yuv, planes); // split the image into separate color planes
-
- #if 1
- // method 1. process Y plane using an iterator
- MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
- for(; it != it_end; ++it)
- {
- double v = *it*1.7 + rand()%21-10;
- *it = saturate_cast<uchar>(v*v/255.);
- }
-
- // method 2. process the first chroma plane using pre-stored row pointer.
- // method 3. process the second chroma plane using individual element access
- for( int y = 0; y < img_yuv.rows; y++ )
- {
- uchar* Uptr = planes[1].ptr<uchar>(y);
- for( int x = 0; x < img_yuv.cols; x++ )
- {
- Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
- uchar& Vxy = planes[2].at<uchar>(y, x);
- Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128);
- }
- }
-
- #else
- Mat noise(img.size(), CV_8U); // another Mat constructor; allocates a matrix of the specified size and type
- randn(noise, Scalar::all(128), Scalar::all(20)); // fills the matrix with normally distributed random values;
- // there is also randu() for uniformly distributed random number generation
- GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5); // blur the noise a bit, kernel size is 3x3 and both sigma's are set to 0.5
-
- const double brightness_gain = 0;
- const double contrast_gain = 1.7;
- #if DEMO_MIXED_API_USE
- // it's easy to pass the new matrices to the functions that only work with IplImage or CvMat:
- // step 1) - convert the headers, data will not be copied
- IplImage cv_planes_0 = planes[0], cv_noise = noise;
- // step 2) call the function; do not forget unary "&" to form pointers
- cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
- #else
- addWeighted(planes[0], constrast_gain, noise, 1, -128 + brightness_gain, planes[0]);
- #endif
- const double color_scale = 0.5;
- // Mat::convertTo() replaces cvConvertScale. One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
- planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));
- // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
- // This expression will not create any temporary arrays and should be almost as fast as the above variant
- planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));
-
- // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
- planes[0] = planes[0].mul(planes[0], 1./255);
- #endif
-
- // now merge the results back
- merge(planes, img_yuv);
- // and produce the output RGB image
- cvtColor(img_yuv, img, CV_YCrCb2BGR);
-
- // this is counterpart for cvNamedWindow
- namedWindow("image with grain", CV_WINDOW_AUTOSIZE);
- #if DEMO_MIXED_API_USE
- // this is to demonstrate that img and iplimg really share the data - the result of the above
- // processing is stored in img and thus in iplimg too.
- cvShowImage("image with grain", iplimg);
- #else
- imshow("image with grain", img);
- #endif
- waitKey();
-
- return 0;
- // all the memory will automatically be released by Vector<>, Mat and Ptr<> destructors.
- }