/core/src/main/java/org/bouncycastle/crypto/engines/SerpentEngine.java

https://gitlab.com/edgardo001/bc-java · Java · 296 lines · 233 code · 16 blank · 47 comment · 6 complexity · ea529f15de51a52f5cc2faacedce0b7e MD5 · raw file

  1. package org.bouncycastle.crypto.engines;
  2. import org.bouncycastle.util.Pack;
  3. /**
  4. * Serpent is a 128-bit 32-round block cipher with variable key lengths,
  5. * including 128, 192 and 256 bit keys conjectured to be at least as
  6. * secure as three-key triple-DES.
  7. * <p>
  8. * Serpent was designed by Ross Anderson, Eli Biham and Lars Knudsen as a
  9. * candidate algorithm for the NIST AES Quest.
  10. * <p>
  11. * For full details see <a href="http://www.cl.cam.ac.uk/~rja14/serpent.html">The Serpent home page</a>
  12. */
  13. public final class SerpentEngine
  14. extends SerpentEngineBase
  15. {
  16. /**
  17. * Expand a user-supplied key material into a session key.
  18. *
  19. * @param key The user-key bytes (multiples of 4) to use.
  20. * @exception IllegalArgumentException
  21. */
  22. protected int[] makeWorkingKey(
  23. byte[] key)
  24. throws IllegalArgumentException
  25. {
  26. //
  27. // pad key to 256 bits
  28. //
  29. int[] kPad = new int[16];
  30. int off = 0;
  31. int length = 0;
  32. for (off = 0; (off + 4) < key.length; off += 4)
  33. {
  34. kPad[length++] = Pack.littleEndianToInt(key, off);
  35. }
  36. if (off % 4 == 0)
  37. {
  38. kPad[length++] = Pack.littleEndianToInt(key, off);
  39. if (length < 8)
  40. {
  41. kPad[length] = 1;
  42. }
  43. }
  44. else
  45. {
  46. throw new IllegalArgumentException("key must be a multiple of 4 bytes");
  47. }
  48. //
  49. // expand the padded key up to 33 x 128 bits of key material
  50. //
  51. int amount = (ROUNDS + 1) * 4;
  52. int[] w = new int[amount];
  53. //
  54. // compute w0 to w7 from w-8 to w-1
  55. //
  56. for (int i = 8; i < 16; i++)
  57. {
  58. kPad[i] = rotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11);
  59. }
  60. System.arraycopy(kPad, 8, w, 0, 8);
  61. //
  62. // compute w8 to w136
  63. //
  64. for (int i = 8; i < amount; i++)
  65. {
  66. w[i] = rotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11);
  67. }
  68. //
  69. // create the working keys by processing w with the Sbox and IP
  70. //
  71. sb3(w[0], w[1], w[2], w[3]);
  72. w[0] = X0; w[1] = X1; w[2] = X2; w[3] = X3;
  73. sb2(w[4], w[5], w[6], w[7]);
  74. w[4] = X0; w[5] = X1; w[6] = X2; w[7] = X3;
  75. sb1(w[8], w[9], w[10], w[11]);
  76. w[8] = X0; w[9] = X1; w[10] = X2; w[11] = X3;
  77. sb0(w[12], w[13], w[14], w[15]);
  78. w[12] = X0; w[13] = X1; w[14] = X2; w[15] = X3;
  79. sb7(w[16], w[17], w[18], w[19]);
  80. w[16] = X0; w[17] = X1; w[18] = X2; w[19] = X3;
  81. sb6(w[20], w[21], w[22], w[23]);
  82. w[20] = X0; w[21] = X1; w[22] = X2; w[23] = X3;
  83. sb5(w[24], w[25], w[26], w[27]);
  84. w[24] = X0; w[25] = X1; w[26] = X2; w[27] = X3;
  85. sb4(w[28], w[29], w[30], w[31]);
  86. w[28] = X0; w[29] = X1; w[30] = X2; w[31] = X3;
  87. sb3(w[32], w[33], w[34], w[35]);
  88. w[32] = X0; w[33] = X1; w[34] = X2; w[35] = X3;
  89. sb2(w[36], w[37], w[38], w[39]);
  90. w[36] = X0; w[37] = X1; w[38] = X2; w[39] = X3;
  91. sb1(w[40], w[41], w[42], w[43]);
  92. w[40] = X0; w[41] = X1; w[42] = X2; w[43] = X3;
  93. sb0(w[44], w[45], w[46], w[47]);
  94. w[44] = X0; w[45] = X1; w[46] = X2; w[47] = X3;
  95. sb7(w[48], w[49], w[50], w[51]);
  96. w[48] = X0; w[49] = X1; w[50] = X2; w[51] = X3;
  97. sb6(w[52], w[53], w[54], w[55]);
  98. w[52] = X0; w[53] = X1; w[54] = X2; w[55] = X3;
  99. sb5(w[56], w[57], w[58], w[59]);
  100. w[56] = X0; w[57] = X1; w[58] = X2; w[59] = X3;
  101. sb4(w[60], w[61], w[62], w[63]);
  102. w[60] = X0; w[61] = X1; w[62] = X2; w[63] = X3;
  103. sb3(w[64], w[65], w[66], w[67]);
  104. w[64] = X0; w[65] = X1; w[66] = X2; w[67] = X3;
  105. sb2(w[68], w[69], w[70], w[71]);
  106. w[68] = X0; w[69] = X1; w[70] = X2; w[71] = X3;
  107. sb1(w[72], w[73], w[74], w[75]);
  108. w[72] = X0; w[73] = X1; w[74] = X2; w[75] = X3;
  109. sb0(w[76], w[77], w[78], w[79]);
  110. w[76] = X0; w[77] = X1; w[78] = X2; w[79] = X3;
  111. sb7(w[80], w[81], w[82], w[83]);
  112. w[80] = X0; w[81] = X1; w[82] = X2; w[83] = X3;
  113. sb6(w[84], w[85], w[86], w[87]);
  114. w[84] = X0; w[85] = X1; w[86] = X2; w[87] = X3;
  115. sb5(w[88], w[89], w[90], w[91]);
  116. w[88] = X0; w[89] = X1; w[90] = X2; w[91] = X3;
  117. sb4(w[92], w[93], w[94], w[95]);
  118. w[92] = X0; w[93] = X1; w[94] = X2; w[95] = X3;
  119. sb3(w[96], w[97], w[98], w[99]);
  120. w[96] = X0; w[97] = X1; w[98] = X2; w[99] = X3;
  121. sb2(w[100], w[101], w[102], w[103]);
  122. w[100] = X0; w[101] = X1; w[102] = X2; w[103] = X3;
  123. sb1(w[104], w[105], w[106], w[107]);
  124. w[104] = X0; w[105] = X1; w[106] = X2; w[107] = X3;
  125. sb0(w[108], w[109], w[110], w[111]);
  126. w[108] = X0; w[109] = X1; w[110] = X2; w[111] = X3;
  127. sb7(w[112], w[113], w[114], w[115]);
  128. w[112] = X0; w[113] = X1; w[114] = X2; w[115] = X3;
  129. sb6(w[116], w[117], w[118], w[119]);
  130. w[116] = X0; w[117] = X1; w[118] = X2; w[119] = X3;
  131. sb5(w[120], w[121], w[122], w[123]);
  132. w[120] = X0; w[121] = X1; w[122] = X2; w[123] = X3;
  133. sb4(w[124], w[125], w[126], w[127]);
  134. w[124] = X0; w[125] = X1; w[126] = X2; w[127] = X3;
  135. sb3(w[128], w[129], w[130], w[131]);
  136. w[128] = X0; w[129] = X1; w[130] = X2; w[131] = X3;
  137. return w;
  138. }
  139. /**
  140. * Encrypt one block of plaintext.
  141. *
  142. * @param input the array containing the input data.
  143. * @param inOff offset into the in array the data starts at.
  144. * @param output the array the output data will be copied into.
  145. * @param outOff the offset into the out array the output will start at.
  146. */
  147. protected void encryptBlock(
  148. byte[] input,
  149. int inOff,
  150. byte[] output,
  151. int outOff)
  152. {
  153. X0 = Pack.littleEndianToInt(input, inOff);
  154. X1 = Pack.littleEndianToInt(input, inOff + 4);
  155. X2 = Pack.littleEndianToInt(input, inOff + 8);
  156. X3 = Pack.littleEndianToInt(input, inOff + 12);
  157. sb0(wKey[0] ^ X0, wKey[1] ^ X1, wKey[2] ^ X2, wKey[3] ^ X3); LT();
  158. sb1(wKey[4] ^ X0, wKey[5] ^ X1, wKey[6] ^ X2, wKey[7] ^ X3); LT();
  159. sb2(wKey[8] ^ X0, wKey[9] ^ X1, wKey[10] ^ X2, wKey[11] ^ X3); LT();
  160. sb3(wKey[12] ^ X0, wKey[13] ^ X1, wKey[14] ^ X2, wKey[15] ^ X3); LT();
  161. sb4(wKey[16] ^ X0, wKey[17] ^ X1, wKey[18] ^ X2, wKey[19] ^ X3); LT();
  162. sb5(wKey[20] ^ X0, wKey[21] ^ X1, wKey[22] ^ X2, wKey[23] ^ X3); LT();
  163. sb6(wKey[24] ^ X0, wKey[25] ^ X1, wKey[26] ^ X2, wKey[27] ^ X3); LT();
  164. sb7(wKey[28] ^ X0, wKey[29] ^ X1, wKey[30] ^ X2, wKey[31] ^ X3); LT();
  165. sb0(wKey[32] ^ X0, wKey[33] ^ X1, wKey[34] ^ X2, wKey[35] ^ X3); LT();
  166. sb1(wKey[36] ^ X0, wKey[37] ^ X1, wKey[38] ^ X2, wKey[39] ^ X3); LT();
  167. sb2(wKey[40] ^ X0, wKey[41] ^ X1, wKey[42] ^ X2, wKey[43] ^ X3); LT();
  168. sb3(wKey[44] ^ X0, wKey[45] ^ X1, wKey[46] ^ X2, wKey[47] ^ X3); LT();
  169. sb4(wKey[48] ^ X0, wKey[49] ^ X1, wKey[50] ^ X2, wKey[51] ^ X3); LT();
  170. sb5(wKey[52] ^ X0, wKey[53] ^ X1, wKey[54] ^ X2, wKey[55] ^ X3); LT();
  171. sb6(wKey[56] ^ X0, wKey[57] ^ X1, wKey[58] ^ X2, wKey[59] ^ X3); LT();
  172. sb7(wKey[60] ^ X0, wKey[61] ^ X1, wKey[62] ^ X2, wKey[63] ^ X3); LT();
  173. sb0(wKey[64] ^ X0, wKey[65] ^ X1, wKey[66] ^ X2, wKey[67] ^ X3); LT();
  174. sb1(wKey[68] ^ X0, wKey[69] ^ X1, wKey[70] ^ X2, wKey[71] ^ X3); LT();
  175. sb2(wKey[72] ^ X0, wKey[73] ^ X1, wKey[74] ^ X2, wKey[75] ^ X3); LT();
  176. sb3(wKey[76] ^ X0, wKey[77] ^ X1, wKey[78] ^ X2, wKey[79] ^ X3); LT();
  177. sb4(wKey[80] ^ X0, wKey[81] ^ X1, wKey[82] ^ X2, wKey[83] ^ X3); LT();
  178. sb5(wKey[84] ^ X0, wKey[85] ^ X1, wKey[86] ^ X2, wKey[87] ^ X3); LT();
  179. sb6(wKey[88] ^ X0, wKey[89] ^ X1, wKey[90] ^ X2, wKey[91] ^ X3); LT();
  180. sb7(wKey[92] ^ X0, wKey[93] ^ X1, wKey[94] ^ X2, wKey[95] ^ X3); LT();
  181. sb0(wKey[96] ^ X0, wKey[97] ^ X1, wKey[98] ^ X2, wKey[99] ^ X3); LT();
  182. sb1(wKey[100] ^ X0, wKey[101] ^ X1, wKey[102] ^ X2, wKey[103] ^ X3); LT();
  183. sb2(wKey[104] ^ X0, wKey[105] ^ X1, wKey[106] ^ X2, wKey[107] ^ X3); LT();
  184. sb3(wKey[108] ^ X0, wKey[109] ^ X1, wKey[110] ^ X2, wKey[111] ^ X3); LT();
  185. sb4(wKey[112] ^ X0, wKey[113] ^ X1, wKey[114] ^ X2, wKey[115] ^ X3); LT();
  186. sb5(wKey[116] ^ X0, wKey[117] ^ X1, wKey[118] ^ X2, wKey[119] ^ X3); LT();
  187. sb6(wKey[120] ^ X0, wKey[121] ^ X1, wKey[122] ^ X2, wKey[123] ^ X3); LT();
  188. sb7(wKey[124] ^ X0, wKey[125] ^ X1, wKey[126] ^ X2, wKey[127] ^ X3);
  189. Pack.intToLittleEndian(wKey[128] ^ X0, output, outOff);
  190. Pack.intToLittleEndian(wKey[129] ^ X1, output, outOff + 4);
  191. Pack.intToLittleEndian(wKey[130] ^ X2, output, outOff + 8);
  192. Pack.intToLittleEndian(wKey[131] ^ X3, output, outOff + 12);
  193. }
  194. /**
  195. * Decrypt one block of ciphertext.
  196. *
  197. * @param input the array containing the input data.
  198. * @param inOff offset into the in array the data starts at.
  199. * @param output the array the output data will be copied into.
  200. * @param outOff the offset into the out array the output will start at.
  201. */
  202. protected void decryptBlock(
  203. byte[] input,
  204. int inOff,
  205. byte[] output,
  206. int outOff)
  207. {
  208. X0 = wKey[128] ^ Pack.littleEndianToInt(input, inOff);
  209. X1 = wKey[129] ^ Pack.littleEndianToInt(input, inOff + 4);
  210. X2 = wKey[130] ^ Pack.littleEndianToInt(input, inOff + 8);
  211. X3 = wKey[131] ^ Pack.littleEndianToInt(input, inOff + 12);
  212. ib7(X0, X1, X2, X3);
  213. X0 ^= wKey[124]; X1 ^= wKey[125]; X2 ^= wKey[126]; X3 ^= wKey[127];
  214. inverseLT(); ib6(X0, X1, X2, X3);
  215. X0 ^= wKey[120]; X1 ^= wKey[121]; X2 ^= wKey[122]; X3 ^= wKey[123];
  216. inverseLT(); ib5(X0, X1, X2, X3);
  217. X0 ^= wKey[116]; X1 ^= wKey[117]; X2 ^= wKey[118]; X3 ^= wKey[119];
  218. inverseLT(); ib4(X0, X1, X2, X3);
  219. X0 ^= wKey[112]; X1 ^= wKey[113]; X2 ^= wKey[114]; X3 ^= wKey[115];
  220. inverseLT(); ib3(X0, X1, X2, X3);
  221. X0 ^= wKey[108]; X1 ^= wKey[109]; X2 ^= wKey[110]; X3 ^= wKey[111];
  222. inverseLT(); ib2(X0, X1, X2, X3);
  223. X0 ^= wKey[104]; X1 ^= wKey[105]; X2 ^= wKey[106]; X3 ^= wKey[107];
  224. inverseLT(); ib1(X0, X1, X2, X3);
  225. X0 ^= wKey[100]; X1 ^= wKey[101]; X2 ^= wKey[102]; X3 ^= wKey[103];
  226. inverseLT(); ib0(X0, X1, X2, X3);
  227. X0 ^= wKey[96]; X1 ^= wKey[97]; X2 ^= wKey[98]; X3 ^= wKey[99];
  228. inverseLT(); ib7(X0, X1, X2, X3);
  229. X0 ^= wKey[92]; X1 ^= wKey[93]; X2 ^= wKey[94]; X3 ^= wKey[95];
  230. inverseLT(); ib6(X0, X1, X2, X3);
  231. X0 ^= wKey[88]; X1 ^= wKey[89]; X2 ^= wKey[90]; X3 ^= wKey[91];
  232. inverseLT(); ib5(X0, X1, X2, X3);
  233. X0 ^= wKey[84]; X1 ^= wKey[85]; X2 ^= wKey[86]; X3 ^= wKey[87];
  234. inverseLT(); ib4(X0, X1, X2, X3);
  235. X0 ^= wKey[80]; X1 ^= wKey[81]; X2 ^= wKey[82]; X3 ^= wKey[83];
  236. inverseLT(); ib3(X0, X1, X2, X3);
  237. X0 ^= wKey[76]; X1 ^= wKey[77]; X2 ^= wKey[78]; X3 ^= wKey[79];
  238. inverseLT(); ib2(X0, X1, X2, X3);
  239. X0 ^= wKey[72]; X1 ^= wKey[73]; X2 ^= wKey[74]; X3 ^= wKey[75];
  240. inverseLT(); ib1(X0, X1, X2, X3);
  241. X0 ^= wKey[68]; X1 ^= wKey[69]; X2 ^= wKey[70]; X3 ^= wKey[71];
  242. inverseLT(); ib0(X0, X1, X2, X3);
  243. X0 ^= wKey[64]; X1 ^= wKey[65]; X2 ^= wKey[66]; X3 ^= wKey[67];
  244. inverseLT(); ib7(X0, X1, X2, X3);
  245. X0 ^= wKey[60]; X1 ^= wKey[61]; X2 ^= wKey[62]; X3 ^= wKey[63];
  246. inverseLT(); ib6(X0, X1, X2, X3);
  247. X0 ^= wKey[56]; X1 ^= wKey[57]; X2 ^= wKey[58]; X3 ^= wKey[59];
  248. inverseLT(); ib5(X0, X1, X2, X3);
  249. X0 ^= wKey[52]; X1 ^= wKey[53]; X2 ^= wKey[54]; X3 ^= wKey[55];
  250. inverseLT(); ib4(X0, X1, X2, X3);
  251. X0 ^= wKey[48]; X1 ^= wKey[49]; X2 ^= wKey[50]; X3 ^= wKey[51];
  252. inverseLT(); ib3(X0, X1, X2, X3);
  253. X0 ^= wKey[44]; X1 ^= wKey[45]; X2 ^= wKey[46]; X3 ^= wKey[47];
  254. inverseLT(); ib2(X0, X1, X2, X3);
  255. X0 ^= wKey[40]; X1 ^= wKey[41]; X2 ^= wKey[42]; X3 ^= wKey[43];
  256. inverseLT(); ib1(X0, X1, X2, X3);
  257. X0 ^= wKey[36]; X1 ^= wKey[37]; X2 ^= wKey[38]; X3 ^= wKey[39];
  258. inverseLT(); ib0(X0, X1, X2, X3);
  259. X0 ^= wKey[32]; X1 ^= wKey[33]; X2 ^= wKey[34]; X3 ^= wKey[35];
  260. inverseLT(); ib7(X0, X1, X2, X3);
  261. X0 ^= wKey[28]; X1 ^= wKey[29]; X2 ^= wKey[30]; X3 ^= wKey[31];
  262. inverseLT(); ib6(X0, X1, X2, X3);
  263. X0 ^= wKey[24]; X1 ^= wKey[25]; X2 ^= wKey[26]; X3 ^= wKey[27];
  264. inverseLT(); ib5(X0, X1, X2, X3);
  265. X0 ^= wKey[20]; X1 ^= wKey[21]; X2 ^= wKey[22]; X3 ^= wKey[23];
  266. inverseLT(); ib4(X0, X1, X2, X3);
  267. X0 ^= wKey[16]; X1 ^= wKey[17]; X2 ^= wKey[18]; X3 ^= wKey[19];
  268. inverseLT(); ib3(X0, X1, X2, X3);
  269. X0 ^= wKey[12]; X1 ^= wKey[13]; X2 ^= wKey[14]; X3 ^= wKey[15];
  270. inverseLT(); ib2(X0, X1, X2, X3);
  271. X0 ^= wKey[8]; X1 ^= wKey[9]; X2 ^= wKey[10]; X3 ^= wKey[11];
  272. inverseLT(); ib1(X0, X1, X2, X3);
  273. X0 ^= wKey[4]; X1 ^= wKey[5]; X2 ^= wKey[6]; X3 ^= wKey[7];
  274. inverseLT(); ib0(X0, X1, X2, X3);
  275. Pack.intToLittleEndian(X0 ^ wKey[0], output, outOff);
  276. Pack.intToLittleEndian(X1 ^ wKey[1], output, outOff + 4);
  277. Pack.intToLittleEndian(X2 ^ wKey[2], output, outOff + 8);
  278. Pack.intToLittleEndian(X3 ^ wKey[3], output, outOff + 12);
  279. }
  280. }