/edk2/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_long_future.py
Python | 221 lines | 138 code | 33 blank | 50 comment | 37 complexity | 7fbd783edfe6fc828aa765abea8aeb43 MD5 | raw file
- from __future__ import division
- # When true division is the default, get rid of this and add it to
- # test_long.py instead. In the meantime, it's too obscure to try to
- # trick just part of test_long into using future division.
-
- import sys
- import random
- import math
- import unittest
- from test.test_support import run_unittest
-
- # decorator for skipping tests on non-IEEE 754 platforms
- requires_IEEE_754 = unittest.skipUnless(
- float.__getformat__("double").startswith("IEEE"),
- "test requires IEEE 754 doubles")
-
- DBL_MAX = sys.float_info.max
- DBL_MAX_EXP = sys.float_info.max_exp
- DBL_MIN_EXP = sys.float_info.min_exp
- DBL_MANT_DIG = sys.float_info.mant_dig
- DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
-
- # pure Python version of correctly-rounded true division
- def truediv(a, b):
- """Correctly-rounded true division for integers."""
- negative = a^b < 0
- a, b = abs(a), abs(b)
-
- # exceptions: division by zero, overflow
- if not b:
- raise ZeroDivisionError("division by zero")
- if a >= DBL_MIN_OVERFLOW * b:
- raise OverflowError("int/int too large to represent as a float")
-
- # find integer d satisfying 2**(d - 1) <= a/b < 2**d
- d = a.bit_length() - b.bit_length()
- if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
- d += 1
-
- # compute 2**-exp * a / b for suitable exp
- exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
- a, b = a << max(-exp, 0), b << max(exp, 0)
- q, r = divmod(a, b)
-
- # round-half-to-even: fractional part is r/b, which is > 0.5 iff
- # 2*r > b, and == 0.5 iff 2*r == b.
- if 2*r > b or 2*r == b and q % 2 == 1:
- q += 1
-
- result = math.ldexp(float(q), exp)
- return -result if negative else result
-
- class TrueDivisionTests(unittest.TestCase):
- def test(self):
- huge = 1L << 40000
- mhuge = -huge
- self.assertEqual(huge / huge, 1.0)
- self.assertEqual(mhuge / mhuge, 1.0)
- self.assertEqual(huge / mhuge, -1.0)
- self.assertEqual(mhuge / huge, -1.0)
- self.assertEqual(1 / huge, 0.0)
- self.assertEqual(1L / huge, 0.0)
- self.assertEqual(1 / mhuge, 0.0)
- self.assertEqual(1L / mhuge, 0.0)
- self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
- self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
- self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
- self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
- self.assertEqual(huge / (huge << 1), 0.5)
- self.assertEqual((1000000 * huge) / huge, 1000000)
-
- namespace = {'huge': huge, 'mhuge': mhuge}
-
- for overflow in ["float(huge)", "float(mhuge)",
- "huge / 1", "huge / 2L", "huge / -1", "huge / -2L",
- "mhuge / 100", "mhuge / 100L"]:
- # If the "eval" does not happen in this module,
- # true division is not enabled
- with self.assertRaises(OverflowError):
- eval(overflow, namespace)
-
- for underflow in ["1 / huge", "2L / huge", "-1 / huge", "-2L / huge",
- "100 / mhuge", "100L / mhuge"]:
- result = eval(underflow, namespace)
- self.assertEqual(result, 0.0, 'expected underflow to 0 '
- 'from {!r}'.format(underflow))
-
- for zero in ["huge / 0", "huge / 0L", "mhuge / 0", "mhuge / 0L"]:
- with self.assertRaises(ZeroDivisionError):
- eval(zero, namespace)
-
- def check_truediv(self, a, b, skip_small=True):
- """Verify that the result of a/b is correctly rounded, by
- comparing it with a pure Python implementation of correctly
- rounded division. b should be nonzero."""
-
- a, b = long(a), long(b)
-
- # skip check for small a and b: in this case, the current
- # implementation converts the arguments to float directly and
- # then applies a float division. This can give doubly-rounded
- # results on x87-using machines (particularly 32-bit Linux).
- if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
- return
-
- try:
- # use repr so that we can distinguish between -0.0 and 0.0
- expected = repr(truediv(a, b))
- except OverflowError:
- expected = 'overflow'
- except ZeroDivisionError:
- expected = 'zerodivision'
-
- try:
- got = repr(a / b)
- except OverflowError:
- got = 'overflow'
- except ZeroDivisionError:
- got = 'zerodivision'
-
- self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
- "expected {}, got {}".format(a, b, expected, got))
-
- @requires_IEEE_754
- def test_correctly_rounded_true_division(self):
- # more stringent tests than those above, checking that the
- # result of true division of ints is always correctly rounded.
- # This test should probably be considered CPython-specific.
-
- # Exercise all the code paths not involving Gb-sized ints.
- # ... divisions involving zero
- self.check_truediv(123, 0)
- self.check_truediv(-456, 0)
- self.check_truediv(0, 3)
- self.check_truediv(0, -3)
- self.check_truediv(0, 0)
- # ... overflow or underflow by large margin
- self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
- self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
- # ... a much larger or smaller than b
- self.check_truediv(12345*2**100, 98765)
- self.check_truediv(12345*2**30, 98765*7**81)
- # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
- # 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
- bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
- DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
- for base in bases:
- for exp in range(base - 15, base + 15):
- self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
- self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
-
- # overflow corner case
- for m in [1, 2, 7, 17, 12345, 7**100,
- -1, -2, -5, -23, -67891, -41**50]:
- for n in range(-10, 10):
- self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
- self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
-
- # check detection of inexactness in shifting stage
- for n in range(250):
- # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
- # between two representable floats, and would usually be
- # rounded down under round-half-to-even. The tiniest of
- # additions to the numerator should cause it to be rounded
- # up instead.
- self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
- 2**DBL_MANT_DIG*12345)
-
- # 1/2731 is one of the smallest division cases that's subject
- # to double rounding on IEEE 754 machines working internally with
- # 64-bit precision. On such machines, the next check would fail,
- # were it not explicitly skipped in check_truediv.
- self.check_truediv(1, 2731)
-
- # a particularly bad case for the old algorithm: gives an
- # error of close to 3.5 ulps.
- self.check_truediv(295147931372582273023, 295147932265116303360)
- for i in range(1000):
- self.check_truediv(10**(i+1), 10**i)
- self.check_truediv(10**i, 10**(i+1))
-
- # test round-half-to-even behaviour, normal result
- for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
- -1, -2, -5, -23, -67891, -41**50]:
- for n in range(-10, 10):
- self.check_truediv(2**DBL_MANT_DIG*m + n, m)
-
- # test round-half-to-even, subnormal result
- for n in range(-20, 20):
- self.check_truediv(n, 2**1076)
-
- # largeish random divisions: a/b where |a| <= |b| <=
- # 2*|a|; |ans| is between 0.5 and 1.0, so error should
- # always be bounded by 2**-54 with equality possible only
- # if the least significant bit of q=ans*2**53 is zero.
- for M in [10**10, 10**100, 10**1000]:
- for i in range(1000):
- a = random.randrange(1, M)
- b = random.randrange(a, 2*a+1)
- self.check_truediv(a, b)
- self.check_truediv(-a, b)
- self.check_truediv(a, -b)
- self.check_truediv(-a, -b)
-
- # and some (genuinely) random tests
- for _ in range(10000):
- a_bits = random.randrange(1000)
- b_bits = random.randrange(1, 1000)
- x = random.randrange(2**a_bits)
- y = random.randrange(1, 2**b_bits)
- self.check_truediv(x, y)
- self.check_truediv(x, -y)
- self.check_truediv(-x, y)
- self.check_truediv(-x, -y)
-
-
- def test_main():
- run_unittest(TrueDivisionTests)
-
- if __name__ == "__main__":
- test_main()