/山火-ヤギの咆哮-/lib/boost_1_45_0/boost/math/distributions/detail/inv_discrete_quantile.hpp
C++ Header | 481 lines | 371 code | 26 blank | 84 comment | 52 complexity | 035ed587a048e4a0517a6a2f69bbe869 MD5 | raw file
- // Copyright John Maddock 2007.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
- #define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
- #include <algorithm>
- namespace boost{ namespace math{ namespace detail{
- //
- // Functor for root finding algorithm:
- //
- template <class Dist>
- struct distribution_quantile_finder
- {
- typedef typename Dist::value_type value_type;
- typedef typename Dist::policy_type policy_type;
- distribution_quantile_finder(const Dist d, value_type p, value_type q)
- : dist(d), target(p < q ? p : q), comp(p < q ? false : true) {}
- value_type operator()(value_type const& x)
- {
- return comp ? target - cdf(complement(dist, x)) : cdf(dist, x) - target;
- }
- private:
- Dist dist;
- value_type target;
- bool comp;
- };
- //
- // The purpose of adjust_bounds, is to toggle the last bit of the
- // range so that both ends round to the same integer, if possible.
- // If they do both round the same then we terminate the search
- // for the root *very* quickly when finding an integer result.
- // At the point that this function is called we know that "a" is
- // below the root and "b" above it, so this change can not result
- // in the root no longer being bracketed.
- //
- template <class Real, class Tol>
- void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
- template <class Real>
- void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
- {
- BOOST_MATH_STD_USING
- b -= tools::epsilon<Real>() * b;
- }
- template <class Real>
- void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
- {
- BOOST_MATH_STD_USING
- a += tools::epsilon<Real>() * a;
- }
- template <class Real>
- void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
- {
- BOOST_MATH_STD_USING
- a += tools::epsilon<Real>() * a;
- b -= tools::epsilon<Real>() * b;
- }
- //
- // This is where all the work is done:
- //
- template <class Dist, class Tolerance>
- typename Dist::value_type
- do_inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- typename Dist::value_type guess,
- const typename Dist::value_type& multiplier,
- typename Dist::value_type adder,
- const Tolerance& tol,
- boost::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- typedef typename Dist::policy_type policy_type;
- static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
- BOOST_MATH_STD_USING
- distribution_quantile_finder<Dist> f(dist, p, q);
- //
- // Max bounds of the distribution:
- //
- value_type min_bound, max_bound;
- boost::math::tie(min_bound, max_bound) = support(dist);
- if(guess > max_bound)
- guess = max_bound;
- if(guess < min_bound)
- guess = min_bound;
- value_type fa = f(guess);
- boost::uintmax_t count = max_iter - 1;
- value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
- if(fa == 0)
- return guess;
- //
- // For small expected results, just use a linear search:
- //
- if(guess < 10)
- {
- b = a;
- while((a < 10) && (fa * fb >= 0))
- {
- if(fb <= 0)
- {
- a = b;
- b = a + 1;
- if(b > max_bound)
- b = max_bound;
- fb = f(b);
- --count;
- if(fb == 0)
- return b;
- }
- else
- {
- b = a;
- a = (std::max)(value_type(b - 1), value_type(0));
- if(a < min_bound)
- a = min_bound;
- fa = f(a);
- --count;
- if(fa == 0)
- return a;
- }
- }
- }
- //
- // Try and bracket using a couple of additions first,
- // we're assuming that "guess" is likely to be accurate
- // to the nearest int or so:
- //
- else if(adder != 0)
- {
- //
- // If we're looking for a large result, then bump "adder" up
- // by a bit to increase our chances of bracketing the root:
- //
- //adder = (std::max)(adder, 0.001f * guess);
- if(fa < 0)
- {
- b = a + adder;
- if(b > max_bound)
- b = max_bound;
- }
- else
- {
- b = (std::max)(value_type(a - adder), value_type(0));
- if(b < min_bound)
- b = min_bound;
- }
- fb = f(b);
- --count;
- if(fb == 0)
- return b;
- if(count && (fa * fb >= 0))
- {
- //
- // We didn't bracket the root, try
- // once more:
- //
- a = b;
- fa = fb;
- if(fa < 0)
- {
- b = a + adder;
- if(b > max_bound)
- b = max_bound;
- }
- else
- {
- b = (std::max)(value_type(a - adder), value_type(0));
- if(b < min_bound)
- b = min_bound;
- }
- fb = f(b);
- --count;
- }
- if(a > b)
- {
- using std::swap;
- swap(a, b);
- swap(fa, fb);
- }
- }
- //
- // If the root hasn't been bracketed yet, try again
- // using the multiplier this time:
- //
- if((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(fa < 0)
- {
- //
- // Zero is to the right of x2, so walk upwards
- // until we find it:
- //
- while((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(count == 0)
- policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
- a = b;
- fa = fb;
- b *= multiplier;
- if(b > max_bound)
- b = max_bound;
- fb = f(b);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- else
- {
- //
- // Zero is to the left of a, so walk downwards
- // until we find it:
- //
- while((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(fabs(a) < tools::min_value<value_type>())
- {
- // Escape route just in case the answer is zero!
- max_iter -= count;
- max_iter += 1;
- return 0;
- }
- if(count == 0)
- policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type());
- b = a;
- fb = fa;
- a /= multiplier;
- if(a < min_bound)
- a = min_bound;
- fa = f(a);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- }
- max_iter -= count;
- if(fa == 0)
- return a;
- if(fb == 0)
- return b;
- //
- // Adjust bounds so that if we're looking for an integer
- // result, then both ends round the same way:
- //
- adjust_bounds(a, b, tol);
- //
- // We don't want zero or denorm lower bounds:
- //
- if(a < tools::min_value<value_type>())
- a = tools::min_value<value_type>();
- //
- // Go ahead and find the root:
- //
- std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
- max_iter += count;
- BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
- return (r.first + r.second) / 2;
- }
- //
- // Now finally are the public API functions.
- // There is one overload for each policy,
- // each one is responsible for selecting the correct
- // termination condition, and rounding the result
- // to an int where required.
- //
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::real>&,
- boost::uintmax_t& max_iter)
- {
- if(p <= pdf(dist, 0))
- return 0;
- return do_inverse_discrete_quantile(
- dist,
- p,
- q,
- guess,
- multiplier,
- adder,
- tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
- max_iter);
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_outwards>&,
- boost::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- if(p <= pdf(dist, 0))
- return 0;
- //
- // What happens next depends on whether we're looking for an
- // upper or lower quantile:
- //
- if(p < 0.5f)
- return floor(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- (guess < 1 ? value_type(1) : (value_type)floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter));
- // else:
- return ceil(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- (value_type)ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter));
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_inwards>&,
- boost::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- if(p <= pdf(dist, 0))
- return 0;
- //
- // What happens next depends on whether we're looking for an
- // upper or lower quantile:
- //
- if(p < 0.5f)
- return ceil(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter));
- // else:
- return floor(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- (guess < 1 ? value_type(1) : floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter));
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_down>&,
- boost::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- if(p <= pdf(dist, 0))
- return 0;
- return floor(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- (guess < 1 ? value_type(1) : floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter));
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_up>&,
- boost::uintmax_t& max_iter)
- {
- BOOST_MATH_STD_USING
- if(p <= pdf(dist, 0))
- return 0;
- return ceil(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter));
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- const typename Dist::value_type& q,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_nearest>&,
- boost::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- if(p <= pdf(dist, 0))
- return 0;
- //
- // Note that we adjust the guess to the nearest half-integer:
- // this increase the chances that we will bracket the root
- // with two results that both round to the same integer quickly.
- //
- return floor(do_inverse_discrete_quantile(
- dist,
- p,
- q,
- (guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f),
- multiplier,
- adder,
- tools::equal_nearest_integer(),
- max_iter) + 0.5f);
- }
- }}} // namespaces
- #endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE