PageRenderTime 51ms CodeModel.GetById 19ms RepoModel.GetById 0ms app.codeStats 0ms

/src/backend/snowball/libstemmer/utilities.c

https://gitlab.com/kush/jarulraj-postgresql-cpp
C | 473 lines | 398 code | 52 blank | 23 comment | 159 complexity | 6427bea84aa092688326f1a6ef1cd863 MD5 | raw file
  1. #include "header.h"
  2. #define unless(C) if(!(C))
  3. #define CREATE_SIZE 1
  4. extern symbol * create_s(void) {
  5. symbol * p;
  6. void * mem = malloc(HEAD + (CREATE_SIZE + 1) * sizeof(symbol));
  7. if (mem == NULL) return NULL;
  8. p = (symbol *) (HEAD + (char *) mem);
  9. CAPACITY(p) = CREATE_SIZE;
  10. SET_SIZE(p, CREATE_SIZE);
  11. return p;
  12. }
  13. extern void lose_s(symbol * p) {
  14. if (p == NULL) return;
  15. free((char *) p - HEAD);
  16. }
  17. /*
  18. new_p = skip_utf8(p, c, lb, l, n); skips n characters forwards from p + c
  19. if n +ve, or n characters backwards from p + c - 1 if n -ve. new_p is the new
  20. position, or 0 on failure.
  21. -- used to implement hop and next in the utf8 case.
  22. */
  23. extern int skip_utf8(const symbol * p, int c, int lb, int l, int n) {
  24. int b;
  25. if (n >= 0) {
  26. for (; n > 0; n--) {
  27. if (c >= l) return -1;
  28. b = p[c++];
  29. if (b >= 0xC0) { /* 1100 0000 */
  30. while (c < l) {
  31. b = p[c];
  32. if (b >= 0xC0 || b < 0x80) break;
  33. /* break unless b is 10------ */
  34. c++;
  35. }
  36. }
  37. }
  38. } else {
  39. for (; n < 0; n++) {
  40. if (c <= lb) return -1;
  41. b = p[--c];
  42. if (b >= 0x80) { /* 1000 0000 */
  43. while (c > lb) {
  44. b = p[c];
  45. if (b >= 0xC0) break; /* 1100 0000 */
  46. c--;
  47. }
  48. }
  49. }
  50. }
  51. return c;
  52. }
  53. /* Code for character groupings: utf8 cases */
  54. static int get_utf8(const symbol * p, int c, int l, int * slot) {
  55. int b0, b1;
  56. if (c >= l) return 0;
  57. b0 = p[c++];
  58. if (b0 < 0xC0 || c == l) { /* 1100 0000 */
  59. * slot = b0; return 1;
  60. }
  61. b1 = p[c++];
  62. if (b0 < 0xE0 || c == l) { /* 1110 0000 */
  63. * slot = (b0 & 0x1F) << 6 | (b1 & 0x3F); return 2;
  64. }
  65. * slot = (b0 & 0xF) << 12 | (b1 & 0x3F) << 6 | (p[c] & 0x3F); return 3;
  66. }
  67. static int get_b_utf8(const symbol * p, int c, int lb, int * slot) {
  68. int b0, b1;
  69. if (c <= lb) return 0;
  70. b0 = p[--c];
  71. if (b0 < 0x80 || c == lb) { /* 1000 0000 */
  72. * slot = b0; return 1;
  73. }
  74. b1 = p[--c];
  75. if (b1 >= 0xC0 || c == lb) { /* 1100 0000 */
  76. * slot = (b1 & 0x1F) << 6 | (b0 & 0x3F); return 2;
  77. }
  78. * slot = (p[c] & 0xF) << 12 | (b1 & 0x3F) << 6 | (b0 & 0x3F); return 3;
  79. }
  80. extern int in_grouping_U(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  81. do {
  82. int ch;
  83. int w = get_utf8(z->p, z->c, z->l, & ch);
  84. unless (w) return -1;
  85. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  86. return w;
  87. z->c += w;
  88. } while (repeat);
  89. return 0;
  90. }
  91. extern int in_grouping_b_U(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  92. do {
  93. int ch;
  94. int w = get_b_utf8(z->p, z->c, z->lb, & ch);
  95. unless (w) return -1;
  96. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  97. return w;
  98. z->c -= w;
  99. } while (repeat);
  100. return 0;
  101. }
  102. extern int out_grouping_U(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  103. do {
  104. int ch;
  105. int w = get_utf8(z->p, z->c, z->l, & ch);
  106. unless (w) return -1;
  107. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  108. return w;
  109. z->c += w;
  110. } while (repeat);
  111. return 0;
  112. }
  113. extern int out_grouping_b_U(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  114. do {
  115. int ch;
  116. int w = get_b_utf8(z->p, z->c, z->lb, & ch);
  117. unless (w) return -1;
  118. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  119. return w;
  120. z->c -= w;
  121. } while (repeat);
  122. return 0;
  123. }
  124. /* Code for character groupings: non-utf8 cases */
  125. extern int in_grouping(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  126. do {
  127. int ch;
  128. if (z->c >= z->l) return -1;
  129. ch = z->p[z->c];
  130. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  131. return 1;
  132. z->c++;
  133. } while (repeat);
  134. return 0;
  135. }
  136. extern int in_grouping_b(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  137. do {
  138. int ch;
  139. if (z->c <= z->lb) return -1;
  140. ch = z->p[z->c - 1];
  141. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  142. return 1;
  143. z->c--;
  144. } while (repeat);
  145. return 0;
  146. }
  147. extern int out_grouping(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  148. do {
  149. int ch;
  150. if (z->c >= z->l) return -1;
  151. ch = z->p[z->c];
  152. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  153. return 1;
  154. z->c++;
  155. } while (repeat);
  156. return 0;
  157. }
  158. extern int out_grouping_b(struct SN_env * z, const unsigned char * s, int min, int max, int repeat) {
  159. do {
  160. int ch;
  161. if (z->c <= z->lb) return -1;
  162. ch = z->p[z->c - 1];
  163. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0)
  164. return 1;
  165. z->c--;
  166. } while (repeat);
  167. return 0;
  168. }
  169. extern int eq_s(struct SN_env * z, int s_size, const symbol * s) {
  170. if (z->l - z->c < s_size || memcmp(z->p + z->c, s, s_size * sizeof(symbol)) != 0) return 0;
  171. z->c += s_size; return 1;
  172. }
  173. extern int eq_s_b(struct SN_env * z, int s_size, const symbol * s) {
  174. if (z->c - z->lb < s_size || memcmp(z->p + z->c - s_size, s, s_size * sizeof(symbol)) != 0) return 0;
  175. z->c -= s_size; return 1;
  176. }
  177. extern int eq_v(struct SN_env * z, const symbol * p) {
  178. return eq_s(z, SIZE(p), p);
  179. }
  180. extern int eq_v_b(struct SN_env * z, const symbol * p) {
  181. return eq_s_b(z, SIZE(p), p);
  182. }
  183. extern int find_among(struct SN_env * z, const struct among * v, int v_size) {
  184. int i = 0;
  185. int j = v_size;
  186. int c = z->c; int l = z->l;
  187. symbol * q = z->p + c;
  188. const struct among * w;
  189. int common_i = 0;
  190. int common_j = 0;
  191. int first_key_inspected = 0;
  192. while(1) {
  193. int k = i + ((j - i) >> 1);
  194. int diff = 0;
  195. int common = common_i < common_j ? common_i : common_j; /* smaller */
  196. w = v + k;
  197. {
  198. int i2; for (i2 = common; i2 < w->s_size; i2++) {
  199. if (c + common == l) { diff = -1; break; }
  200. diff = q[common] - w->s[i2];
  201. if (diff != 0) break;
  202. common++;
  203. }
  204. }
  205. if (diff < 0) { j = k; common_j = common; }
  206. else { i = k; common_i = common; }
  207. if (j - i <= 1) {
  208. if (i > 0) break; /* v->s has been inspected */
  209. if (j == i) break; /* only one item in v */
  210. /* - but now we need to go round once more to get
  211. v->s inspected. This looks messy, but is actually
  212. the optimal approach. */
  213. if (first_key_inspected) break;
  214. first_key_inspected = 1;
  215. }
  216. }
  217. while(1) {
  218. w = v + i;
  219. if (common_i >= w->s_size) {
  220. z->c = c + w->s_size;
  221. if (w->function == 0) return w->result;
  222. {
  223. int res = w->function(z);
  224. z->c = c + w->s_size;
  225. if (res) return w->result;
  226. }
  227. }
  228. i = w->substring_i;
  229. if (i < 0) return 0;
  230. }
  231. }
  232. /* find_among_b is for backwards processing. Same comments apply */
  233. extern int find_among_b(struct SN_env * z, const struct among * v, int v_size) {
  234. int i = 0;
  235. int j = v_size;
  236. int c = z->c; int lb = z->lb;
  237. symbol * q = z->p + c - 1;
  238. const struct among * w;
  239. int common_i = 0;
  240. int common_j = 0;
  241. int first_key_inspected = 0;
  242. while(1) {
  243. int k = i + ((j - i) >> 1);
  244. int diff = 0;
  245. int common = common_i < common_j ? common_i : common_j;
  246. w = v + k;
  247. {
  248. int i2; for (i2 = w->s_size - 1 - common; i2 >= 0; i2--) {
  249. if (c - common == lb) { diff = -1; break; }
  250. diff = q[- common] - w->s[i2];
  251. if (diff != 0) break;
  252. common++;
  253. }
  254. }
  255. if (diff < 0) { j = k; common_j = common; }
  256. else { i = k; common_i = common; }
  257. if (j - i <= 1) {
  258. if (i > 0) break;
  259. if (j == i) break;
  260. if (first_key_inspected) break;
  261. first_key_inspected = 1;
  262. }
  263. }
  264. while(1) {
  265. w = v + i;
  266. if (common_i >= w->s_size) {
  267. z->c = c - w->s_size;
  268. if (w->function == 0) return w->result;
  269. {
  270. int res = w->function(z);
  271. z->c = c - w->s_size;
  272. if (res) return w->result;
  273. }
  274. }
  275. i = w->substring_i;
  276. if (i < 0) return 0;
  277. }
  278. }
  279. /* Increase the size of the buffer pointed to by p to at least n symbols.
  280. * If insufficient memory, returns NULL and frees the old buffer.
  281. */
  282. static symbol * increase_size(symbol * p, int n) {
  283. symbol * q;
  284. int new_size = n + 20;
  285. void * mem = realloc((char *) p - HEAD,
  286. HEAD + (new_size + 1) * sizeof(symbol));
  287. if (mem == NULL) {
  288. lose_s(p);
  289. return NULL;
  290. }
  291. q = (symbol *) (HEAD + (char *)mem);
  292. CAPACITY(q) = new_size;
  293. return q;
  294. }
  295. /* to replace symbols between c_bra and c_ket in z->p by the
  296. s_size symbols at s.
  297. Returns 0 on success, -1 on error.
  298. Also, frees z->p (and sets it to NULL) on error.
  299. */
  300. extern int replace_s(struct SN_env * z, int c_bra, int c_ket, int s_size, const symbol * s, int * adjptr)
  301. {
  302. int adjustment;
  303. int len;
  304. if (z->p == NULL) {
  305. z->p = create_s();
  306. if (z->p == NULL) return -1;
  307. }
  308. adjustment = s_size - (c_ket - c_bra);
  309. len = SIZE(z->p);
  310. if (adjustment != 0) {
  311. if (adjustment + len > CAPACITY(z->p)) {
  312. z->p = increase_size(z->p, adjustment + len);
  313. if (z->p == NULL) return -1;
  314. }
  315. memmove(z->p + c_ket + adjustment,
  316. z->p + c_ket,
  317. (len - c_ket) * sizeof(symbol));
  318. SET_SIZE(z->p, adjustment + len);
  319. z->l += adjustment;
  320. if (z->c >= c_ket)
  321. z->c += adjustment;
  322. else
  323. if (z->c > c_bra)
  324. z->c = c_bra;
  325. }
  326. unless (s_size == 0) memmove(z->p + c_bra, s, s_size * sizeof(symbol));
  327. if (adjptr != NULL)
  328. *adjptr = adjustment;
  329. return 0;
  330. }
  331. static int slice_check(struct SN_env * z) {
  332. if (z->bra < 0 ||
  333. z->bra > z->ket ||
  334. z->ket > z->l ||
  335. z->p == NULL ||
  336. z->l > SIZE(z->p)) /* this line could be removed */
  337. {
  338. #if 0
  339. fprintf(stderr, "faulty slice operation:\n");
  340. debug(z, -1, 0);
  341. #endif
  342. return -1;
  343. }
  344. return 0;
  345. }
  346. extern int slice_from_s(struct SN_env * z, int s_size, const symbol * s) {
  347. if (slice_check(z)) return -1;
  348. return replace_s(z, z->bra, z->ket, s_size, s, NULL);
  349. }
  350. extern int slice_from_v(struct SN_env * z, const symbol * p) {
  351. return slice_from_s(z, SIZE(p), p);
  352. }
  353. extern int slice_del(struct SN_env * z) {
  354. return slice_from_s(z, 0, 0);
  355. }
  356. extern int insert_s(struct SN_env * z, int bra, int ket, int s_size, const symbol * s) {
  357. int adjustment;
  358. if (replace_s(z, bra, ket, s_size, s, &adjustment))
  359. return -1;
  360. if (bra <= z->bra) z->bra += adjustment;
  361. if (bra <= z->ket) z->ket += adjustment;
  362. return 0;
  363. }
  364. extern int insert_v(struct SN_env * z, int bra, int ket, const symbol * p) {
  365. int adjustment;
  366. if (replace_s(z, bra, ket, SIZE(p), p, &adjustment))
  367. return -1;
  368. if (bra <= z->bra) z->bra += adjustment;
  369. if (bra <= z->ket) z->ket += adjustment;
  370. return 0;
  371. }
  372. extern symbol * slice_to(struct SN_env * z, symbol * p) {
  373. if (slice_check(z)) {
  374. lose_s(p);
  375. return NULL;
  376. }
  377. {
  378. int len = z->ket - z->bra;
  379. if (CAPACITY(p) < len) {
  380. p = increase_size(p, len);
  381. if (p == NULL)
  382. return NULL;
  383. }
  384. memmove(p, z->p + z->bra, len * sizeof(symbol));
  385. SET_SIZE(p, len);
  386. }
  387. return p;
  388. }
  389. extern symbol * assign_to(struct SN_env * z, symbol * p) {
  390. int len = z->l;
  391. if (CAPACITY(p) < len) {
  392. p = increase_size(p, len);
  393. if (p == NULL)
  394. return NULL;
  395. }
  396. memmove(p, z->p, len * sizeof(symbol));
  397. SET_SIZE(p, len);
  398. return p;
  399. }
  400. #if 0
  401. extern void debug(struct SN_env * z, int number, int line_count) {
  402. int i;
  403. int limit = SIZE(z->p);
  404. /*if (number >= 0) printf("%3d (line %4d): '", number, line_count);*/
  405. if (number >= 0) printf("%3d (line %4d): [%d]'", number, line_count,limit);
  406. for (i = 0; i <= limit; i++) {
  407. if (z->lb == i) printf("{");
  408. if (z->bra == i) printf("[");
  409. if (z->c == i) printf("|");
  410. if (z->ket == i) printf("]");
  411. if (z->l == i) printf("}");
  412. if (i < limit)
  413. { int ch = z->p[i];
  414. if (ch == 0) ch = '#';
  415. printf("%c", ch);
  416. }
  417. }
  418. printf("'\n");
  419. }
  420. #endif