/samples/gpu/opticalflow_nvidia_api.cpp
C++ | 649 lines | 528 code | 101 blank | 20 comment | 80 complexity | d68e09829354c6ba6733803a91fce0fb MD5 | raw file
- #if defined _MSC_VER && _MSC_VER >= 1400
- #pragma warning( disable : 4201 4408 4127 4100)
- #endif
- #include <iostream>
- #include <iomanip>
- #include <memory>
- #include <exception>
- #include <ctime>
- #include <ctype.h>
- #include "cvconfig.h"
- #include <iostream>
- #include <iomanip>
- #include "opencv2/core/cuda.hpp"
- #include "opencv2/cudalegacy.hpp"
- #include "opencv2/highgui.hpp"
- #if !defined(HAVE_CUDA)
- int main( int, const char** )
- {
- std::cout << "Please compile the library with CUDA support" << std::endl;
- return -1;
- }
- #else
- //using std::tr1::shared_ptr;
- using cv::Ptr;
- #define PARAM_LEFT "--left"
- #define PARAM_RIGHT "--right"
- #define PARAM_SCALE "--scale"
- #define PARAM_ALPHA "--alpha"
- #define PARAM_GAMMA "--gamma"
- #define PARAM_INNER "--inner"
- #define PARAM_OUTER "--outer"
- #define PARAM_SOLVER "--solver"
- #define PARAM_TIME_STEP "--time-step"
- #define PARAM_HELP "--help"
- Ptr<INCVMemAllocator> g_pGPUMemAllocator;
- Ptr<INCVMemAllocator> g_pHostMemAllocator;
- class RgbToMonochrome
- {
- public:
- float operator ()(unsigned char b, unsigned char g, unsigned char r)
- {
- float _r = static_cast<float>(r)/255.0f;
- float _g = static_cast<float>(g)/255.0f;
- float _b = static_cast<float>(b)/255.0f;
- return (_r + _g + _b)/3.0f;
- }
- };
- class RgbToR
- {
- public:
- float operator ()(unsigned char /*b*/, unsigned char /*g*/, unsigned char r)
- {
- return static_cast<float>(r)/255.0f;
- }
- };
- class RgbToG
- {
- public:
- float operator ()(unsigned char /*b*/, unsigned char g, unsigned char /*r*/)
- {
- return static_cast<float>(g)/255.0f;
- }
- };
- class RgbToB
- {
- public:
- float operator ()(unsigned char b, unsigned char /*g*/, unsigned char /*r*/)
- {
- return static_cast<float>(b)/255.0f;
- }
- };
- template<class T>
- NCVStatus CopyData(IplImage *image, Ptr<NCVMatrixAlloc<Ncv32f> >& dst)
- {
- dst = Ptr<NCVMatrixAlloc<Ncv32f> > (new NCVMatrixAlloc<Ncv32f> (*g_pHostMemAllocator, image->width, image->height));
- ncvAssertReturn (dst->isMemAllocated (), NCV_ALLOCATOR_BAD_ALLOC);
- unsigned char *row = reinterpret_cast<unsigned char*> (image->imageData);
- T convert;
- for (int i = 0; i < image->height; ++i)
- {
- for (int j = 0; j < image->width; ++j)
- {
- if (image->nChannels < 3)
- {
- dst->ptr ()[j + i*dst->stride ()] = static_cast<float> (*(row + j*image->nChannels))/255.0f;
- }
- else
- {
- unsigned char *color = row + j * image->nChannels;
- dst->ptr ()[j +i*dst->stride ()] = convert (color[0], color[1], color[2]);
- }
- }
- row += image->widthStep;
- }
- return NCV_SUCCESS;
- }
- template<class T>
- NCVStatus CopyData(const IplImage *image, const NCVMatrixAlloc<Ncv32f> &dst)
- {
- unsigned char *row = reinterpret_cast<unsigned char*> (image->imageData);
- T convert;
- for (int i = 0; i < image->height; ++i)
- {
- for (int j = 0; j < image->width; ++j)
- {
- if (image->nChannels < 3)
- {
- dst.ptr ()[j + i*dst.stride ()] = static_cast<float>(*(row + j*image->nChannels))/255.0f;
- }
- else
- {
- unsigned char *color = row + j * image->nChannels;
- dst.ptr ()[j +i*dst.stride()] = convert (color[0], color[1], color[2]);
- }
- }
- row += image->widthStep;
- }
- return NCV_SUCCESS;
- }
- static NCVStatus LoadImages (const char *frame0Name,
- const char *frame1Name,
- int &width,
- int &height,
- Ptr<NCVMatrixAlloc<Ncv32f> > &src,
- Ptr<NCVMatrixAlloc<Ncv32f> > &dst,
- IplImage *&firstFrame,
- IplImage *&lastFrame)
- {
- IplImage *image;
- image = cvLoadImage (frame0Name);
- if (image == 0)
- {
- std::cout << "Could not open '" << frame0Name << "'\n";
- return NCV_FILE_ERROR;
- }
- firstFrame = image;
- // copy data to src
- ncvAssertReturnNcvStat (CopyData<RgbToMonochrome> (image, src));
- IplImage *image2;
- image2 = cvLoadImage (frame1Name);
- if (image2 == 0)
- {
- std::cout << "Could not open '" << frame1Name << "'\n";
- return NCV_FILE_ERROR;
- }
- lastFrame = image2;
- ncvAssertReturnNcvStat (CopyData<RgbToMonochrome> (image2, dst));
- width = image->width;
- height = image->height;
- return NCV_SUCCESS;
- }
- template<typename T>
- inline T Clamp (T x, T a, T b)
- {
- return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
- }
- template<typename T>
- inline T MapValue (T x, T a, T b, T c, T d)
- {
- x = Clamp (x, a, b);
- return c + (d - c) * (x - a) / (b - a);
- }
- static NCVStatus ShowFlow (NCVMatrixAlloc<Ncv32f> &u, NCVMatrixAlloc<Ncv32f> &v, const char *name)
- {
- IplImage *flowField;
- NCVMatrixAlloc<Ncv32f> host_u(*g_pHostMemAllocator, u.width(), u.height());
- ncvAssertReturn(host_u.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
- NCVMatrixAlloc<Ncv32f> host_v (*g_pHostMemAllocator, u.width (), u.height ());
- ncvAssertReturn (host_v.isMemAllocated (), NCV_ALLOCATOR_BAD_ALLOC);
- ncvAssertReturnNcvStat (u.copySolid (host_u, 0));
- ncvAssertReturnNcvStat (v.copySolid (host_v, 0));
- float *ptr_u = host_u.ptr ();
- float *ptr_v = host_v.ptr ();
- float maxDisplacement = 1.0f;
- for (Ncv32u i = 0; i < u.height (); ++i)
- {
- for (Ncv32u j = 0; j < u.width (); ++j)
- {
- float d = std::max ( fabsf(*ptr_u), fabsf(*ptr_v) );
- if (d > maxDisplacement) maxDisplacement = d;
- ++ptr_u;
- ++ptr_v;
- }
- ptr_u += u.stride () - u.width ();
- ptr_v += v.stride () - v.width ();
- }
- CvSize image_size = cvSize (u.width (), u.height ());
- flowField = cvCreateImage (image_size, IPL_DEPTH_8U, 4);
- if (flowField == 0) return NCV_NULL_PTR;
- unsigned char *row = reinterpret_cast<unsigned char *> (flowField->imageData);
- ptr_u = host_u.ptr();
- ptr_v = host_v.ptr();
- for (int i = 0; i < flowField->height; ++i)
- {
- for (int j = 0; j < flowField->width; ++j)
- {
- (row + j * flowField->nChannels)[0] = 0;
- (row + j * flowField->nChannels)[1] = static_cast<unsigned char> (MapValue (-(*ptr_v), -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
- (row + j * flowField->nChannels)[2] = static_cast<unsigned char> (MapValue (*ptr_u , -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
- (row + j * flowField->nChannels)[3] = 255;
- ++ptr_u;
- ++ptr_v;
- }
- row += flowField->widthStep;
- ptr_u += u.stride () - u.width ();
- ptr_v += v.stride () - v.width ();
- }
- cvShowImage (name, flowField);
- return NCV_SUCCESS;
- }
- static IplImage *CreateImage (NCVMatrixAlloc<Ncv32f> &h_r, NCVMatrixAlloc<Ncv32f> &h_g, NCVMatrixAlloc<Ncv32f> &h_b)
- {
- CvSize imageSize = cvSize (h_r.width (), h_r.height ());
- IplImage *image = cvCreateImage (imageSize, IPL_DEPTH_8U, 4);
- if (image == 0) return 0;
- unsigned char *row = reinterpret_cast<unsigned char*> (image->imageData);
- for (int i = 0; i < image->height; ++i)
- {
- for (int j = 0; j < image->width; ++j)
- {
- int offset = j * image->nChannels;
- int pos = i * h_r.stride () + j;
- row[offset + 0] = static_cast<unsigned char> (h_b.ptr ()[pos] * 255.0f);
- row[offset + 1] = static_cast<unsigned char> (h_g.ptr ()[pos] * 255.0f);
- row[offset + 2] = static_cast<unsigned char> (h_r.ptr ()[pos] * 255.0f);
- row[offset + 3] = 255;
- }
- row += image->widthStep;
- }
- return image;
- }
- static void PrintHelp ()
- {
- std::cout << "Usage help:\n";
- std::cout << std::setiosflags(std::ios::left);
- std::cout << "\t" << std::setw(15) << PARAM_ALPHA << " - set alpha\n";
- std::cout << "\t" << std::setw(15) << PARAM_GAMMA << " - set gamma\n";
- std::cout << "\t" << std::setw(15) << PARAM_INNER << " - set number of inner iterations\n";
- std::cout << "\t" << std::setw(15) << PARAM_LEFT << " - specify left image\n";
- std::cout << "\t" << std::setw(15) << PARAM_RIGHT << " - specify right image\n";
- std::cout << "\t" << std::setw(15) << PARAM_OUTER << " - set number of outer iterations\n";
- std::cout << "\t" << std::setw(15) << PARAM_SCALE << " - set pyramid scale factor\n";
- std::cout << "\t" << std::setw(15) << PARAM_SOLVER << " - set number of basic solver iterations\n";
- std::cout << "\t" << std::setw(15) << PARAM_TIME_STEP << " - set frame interpolation time step\n";
- std::cout << "\t" << std::setw(15) << PARAM_HELP << " - display this help message\n";
- }
- static int ProcessCommandLine(int argc, char **argv,
- Ncv32f &timeStep,
- char *&frame0Name,
- char *&frame1Name,
- NCVBroxOpticalFlowDescriptor &desc)
- {
- timeStep = 0.25f;
- for (int iarg = 1; iarg < argc; ++iarg)
- {
- if (strcmp(argv[iarg], PARAM_LEFT) == 0)
- {
- if (iarg + 1 < argc)
- {
- frame0Name = argv[++iarg];
- }
- else
- return -1;
- }
- if (strcmp(argv[iarg], PARAM_RIGHT) == 0)
- {
- if (iarg + 1 < argc)
- {
- frame1Name = argv[++iarg];
- }
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_SCALE) == 0)
- {
- if (iarg + 1 < argc)
- desc.scale_factor = static_cast<Ncv32f>(atof(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_ALPHA) == 0)
- {
- if (iarg + 1 < argc)
- desc.alpha = static_cast<Ncv32f>(atof(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_GAMMA) == 0)
- {
- if (iarg + 1 < argc)
- desc.gamma = static_cast<Ncv32f>(atof(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_INNER) == 0)
- {
- if (iarg + 1 < argc)
- desc.number_of_inner_iterations = static_cast<Ncv32u>(atoi(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_OUTER) == 0)
- {
- if (iarg + 1 < argc)
- desc.number_of_outer_iterations = static_cast<Ncv32u>(atoi(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_SOLVER) == 0)
- {
- if (iarg + 1 < argc)
- desc.number_of_solver_iterations = static_cast<Ncv32u>(atoi(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_TIME_STEP) == 0)
- {
- if (iarg + 1 < argc)
- timeStep = static_cast<Ncv32f>(atof(argv[++iarg]));
- else
- return -1;
- }
- else if(strcmp(argv[iarg], PARAM_HELP) == 0)
- {
- PrintHelp ();
- return 0;
- }
- }
- return 0;
- }
- int main(int argc, char **argv)
- {
- char *frame0Name = 0, *frame1Name = 0;
- Ncv32f timeStep = 0.01f;
- NCVBroxOpticalFlowDescriptor desc;
- desc.alpha = 0.197f;
- desc.gamma = 50.0f;
- desc.number_of_inner_iterations = 10;
- desc.number_of_outer_iterations = 77;
- desc.number_of_solver_iterations = 10;
- desc.scale_factor = 0.8f;
- int result = ProcessCommandLine (argc, argv, timeStep, frame0Name, frame1Name, desc);
- if (argc == 1 || result)
- {
- PrintHelp();
- return result;
- }
- cv::cuda::printShortCudaDeviceInfo(cv::cuda::getDevice());
- std::cout << "OpenCV / NVIDIA Computer Vision\n";
- std::cout << "Optical Flow Demo: Frame Interpolation\n";
- std::cout << "=========================================\n";
- std::cout << "Press:\n ESC to quit\n 'a' to move to the previous frame\n 's' to move to the next frame\n";
- int devId;
- ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
- cudaDeviceProp devProp;
- ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
- std::cout << "Using GPU: " << devId << "(" << devProp.name <<
- "), arch=" << devProp.major << "." << devProp.minor << std::endl;
- g_pGPUMemAllocator = Ptr<INCVMemAllocator> (new NCVMemNativeAllocator (NCVMemoryTypeDevice, static_cast<Ncv32u>(devProp.textureAlignment)));
- ncvAssertPrintReturn (g_pGPUMemAllocator->isInitialized (), "Device memory allocator isn't initialized", -1);
- g_pHostMemAllocator = Ptr<INCVMemAllocator> (new NCVMemNativeAllocator (NCVMemoryTypeHostPageable, static_cast<Ncv32u>(devProp.textureAlignment)));
- ncvAssertPrintReturn (g_pHostMemAllocator->isInitialized (), "Host memory allocator isn't initialized", -1);
- int width, height;
- Ptr<NCVMatrixAlloc<Ncv32f> > src_host;
- Ptr<NCVMatrixAlloc<Ncv32f> > dst_host;
- IplImage *firstFrame, *lastFrame;
- if (frame0Name != 0 && frame1Name != 0)
- {
- ncvAssertReturnNcvStat (LoadImages (frame0Name, frame1Name, width, height, src_host, dst_host, firstFrame, lastFrame));
- }
- else
- {
- ncvAssertReturnNcvStat (LoadImages ("frame10.bmp", "frame11.bmp", width, height, src_host, dst_host, firstFrame, lastFrame));
- }
- Ptr<NCVMatrixAlloc<Ncv32f> > src (new NCVMatrixAlloc<Ncv32f> (*g_pGPUMemAllocator, src_host->width (), src_host->height ()));
- ncvAssertReturn(src->isMemAllocated(), -1);
- Ptr<NCVMatrixAlloc<Ncv32f> > dst (new NCVMatrixAlloc<Ncv32f> (*g_pGPUMemAllocator, src_host->width (), src_host->height ()));
- ncvAssertReturn (dst->isMemAllocated (), -1);
- ncvAssertReturnNcvStat (src_host->copySolid ( *src, 0 ));
- ncvAssertReturnNcvStat (dst_host->copySolid ( *dst, 0 ));
- #if defined SAFE_MAT_DECL
- #undef SAFE_MAT_DECL
- #endif
- #define SAFE_MAT_DECL(name, allocator, sx, sy) \
- NCVMatrixAlloc<Ncv32f> name(*allocator, sx, sy);\
- ncvAssertReturn(name.isMemAllocated(), -1);
- SAFE_MAT_DECL (u, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (v, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (uBck, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (vBck, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (h_r, g_pHostMemAllocator, width, height);
- SAFE_MAT_DECL (h_g, g_pHostMemAllocator, width, height);
- SAFE_MAT_DECL (h_b, g_pHostMemAllocator, width, height);
- std::cout << "Estimating optical flow\nForward...\n";
- if (NCV_SUCCESS != NCVBroxOpticalFlow (desc, *g_pGPUMemAllocator, *src, *dst, u, v, 0))
- {
- std::cout << "Failed\n";
- return -1;
- }
- std::cout << "Backward...\n";
- if (NCV_SUCCESS != NCVBroxOpticalFlow (desc, *g_pGPUMemAllocator, *dst, *src, uBck, vBck, 0))
- {
- std::cout << "Failed\n";
- return -1;
- }
- // matrix for temporary data
- SAFE_MAT_DECL (d_temp, g_pGPUMemAllocator, width, height);
- // first frame color components (GPU memory)
- SAFE_MAT_DECL (d_r, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (d_g, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (d_b, g_pGPUMemAllocator, width, height);
- // second frame color components (GPU memory)
- SAFE_MAT_DECL (d_rt, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (d_gt, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (d_bt, g_pGPUMemAllocator, width, height);
- // intermediate frame color components (GPU memory)
- SAFE_MAT_DECL (d_rNew, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (d_gNew, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (d_bNew, g_pGPUMemAllocator, width, height);
- // interpolated forward flow
- SAFE_MAT_DECL (ui, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (vi, g_pGPUMemAllocator, width, height);
- // interpolated backward flow
- SAFE_MAT_DECL (ubi, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (vbi, g_pGPUMemAllocator, width, height);
- // occlusion masks
- SAFE_MAT_DECL (occ0, g_pGPUMemAllocator, width, height);
- SAFE_MAT_DECL (occ1, g_pGPUMemAllocator, width, height);
- // prepare color components on host and copy them to device memory
- ncvAssertReturnNcvStat (CopyData<RgbToR> (firstFrame, h_r));
- ncvAssertReturnNcvStat (CopyData<RgbToG> (firstFrame, h_g));
- ncvAssertReturnNcvStat (CopyData<RgbToB> (firstFrame, h_b));
- ncvAssertReturnNcvStat (h_r.copySolid ( d_r, 0 ));
- ncvAssertReturnNcvStat (h_g.copySolid ( d_g, 0 ));
- ncvAssertReturnNcvStat (h_b.copySolid ( d_b, 0 ));
- ncvAssertReturnNcvStat (CopyData<RgbToR> (lastFrame, h_r));
- ncvAssertReturnNcvStat (CopyData<RgbToG> (lastFrame, h_g));
- ncvAssertReturnNcvStat (CopyData<RgbToB> (lastFrame, h_b));
- ncvAssertReturnNcvStat (h_r.copySolid ( d_rt, 0 ));
- ncvAssertReturnNcvStat (h_g.copySolid ( d_gt, 0 ));
- ncvAssertReturnNcvStat (h_b.copySolid ( d_bt, 0 ));
- std::cout << "Interpolating...\n";
- std::cout.precision (4);
- std::vector<IplImage*> frames;
- frames.push_back (firstFrame);
- // compute interpolated frames
- for (Ncv32f timePos = timeStep; timePos < 1.0f; timePos += timeStep)
- {
- ncvAssertCUDAReturn (cudaMemset (ui.ptr (), 0, ui.pitch () * ui.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (vi.ptr (), 0, vi.pitch () * vi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (ubi.ptr (), 0, ubi.pitch () * ubi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (vbi.ptr (), 0, vbi.pitch () * vbi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (occ0.ptr (), 0, occ0.pitch () * occ0.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (occ1.ptr (), 0, occ1.pitch () * occ1.height ()), NCV_CUDA_ERROR);
- NppStInterpolationState state;
- // interpolation state should be filled once except pSrcFrame0, pSrcFrame1, and pNewFrame
- // we will only need to reset buffers content to 0 since interpolator doesn't do this itself
- state.size = NcvSize32u (width, height);
- state.nStep = d_r.pitch ();
- state.pSrcFrame0 = d_r.ptr ();
- state.pSrcFrame1 = d_rt.ptr ();
- state.pFU = u.ptr ();
- state.pFV = v.ptr ();
- state.pBU = uBck.ptr ();
- state.pBV = vBck.ptr ();
- state.pos = timePos;
- state.pNewFrame = d_rNew.ptr ();
- state.ppBuffers[0] = occ0.ptr ();
- state.ppBuffers[1] = occ1.ptr ();
- state.ppBuffers[2] = ui.ptr ();
- state.ppBuffers[3] = vi.ptr ();
- state.ppBuffers[4] = ubi.ptr ();
- state.ppBuffers[5] = vbi.ptr ();
- // interpolate red channel
- nppiStInterpolateFrames (&state);
- // reset buffers
- ncvAssertCUDAReturn (cudaMemset (ui.ptr (), 0, ui.pitch () * ui.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (vi.ptr (), 0, vi.pitch () * vi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (ubi.ptr (), 0, ubi.pitch () * ubi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (vbi.ptr (), 0, vbi.pitch () * vbi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (occ0.ptr (), 0, occ0.pitch () * occ0.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (occ1.ptr (), 0, occ1.pitch () * occ1.height ()), NCV_CUDA_ERROR);
- // interpolate green channel
- state.pSrcFrame0 = d_g.ptr ();
- state.pSrcFrame1 = d_gt.ptr ();
- state.pNewFrame = d_gNew.ptr ();
- nppiStInterpolateFrames (&state);
- // reset buffers
- ncvAssertCUDAReturn (cudaMemset (ui.ptr (), 0, ui.pitch () * ui.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (vi.ptr (), 0, vi.pitch () * vi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (ubi.ptr (), 0, ubi.pitch () * ubi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (vbi.ptr (), 0, vbi.pitch () * vbi.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (occ0.ptr (), 0, occ0.pitch () * occ0.height ()), NCV_CUDA_ERROR);
- ncvAssertCUDAReturn (cudaMemset (occ1.ptr (), 0, occ1.pitch () * occ1.height ()), NCV_CUDA_ERROR);
- // interpolate blue channel
- state.pSrcFrame0 = d_b.ptr ();
- state.pSrcFrame1 = d_bt.ptr ();
- state.pNewFrame = d_bNew.ptr ();
- nppiStInterpolateFrames (&state);
- // copy to host memory
- ncvAssertReturnNcvStat (d_rNew.copySolid (h_r, 0));
- ncvAssertReturnNcvStat (d_gNew.copySolid (h_g, 0));
- ncvAssertReturnNcvStat (d_bNew.copySolid (h_b, 0));
- // convert to IplImage
- IplImage *newFrame = CreateImage (h_r, h_g, h_b);
- if (newFrame == 0)
- {
- std::cout << "Could not create new frame in host memory\n";
- break;
- }
- frames.push_back (newFrame);
- std::cout << timePos * 100.0f << "%\r";
- }
- std::cout << std::setw (5) << "100%\n";
- frames.push_back (lastFrame);
- Ncv32u currentFrame;
- currentFrame = 0;
- ShowFlow (u, v, "Forward flow");
- ShowFlow (uBck, vBck, "Backward flow");
- cvShowImage ("Interpolated frame", frames[currentFrame]);
- bool qPressed = false;
- while ( !qPressed )
- {
- int key = toupper (cvWaitKey (10));
- switch (key)
- {
- case 27:
- qPressed = true;
- break;
- case 'A':
- if (currentFrame > 0) --currentFrame;
- cvShowImage ("Interpolated frame", frames[currentFrame]);
- break;
- case 'S':
- if (currentFrame < frames.size()-1) ++currentFrame;
- cvShowImage ("Interpolated frame", frames[currentFrame]);
- break;
- }
- }
- cvDestroyAllWindows ();
- std::vector<IplImage*>::iterator iter;
- for (iter = frames.begin (); iter != frames.end (); ++iter)
- {
- cvReleaseImage (&(*iter));
- }
- return 0;
- }
- #endif