/BRI_RNAseq_truseq_optimized/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/sandbox/regression/penalized.py
Python | 363 lines | 207 code | 61 blank | 95 comment | 24 complexity | c6421afd47630783633bf096c023a34b MD5 | raw file
- # -*- coding: utf-8 -*-
- """linear model with Theil prior probabilistic restrictions, generalized Ridge
- Created on Tue Dec 20 00:10:10 2011
- Author: Josef Perktold
- License: BSD-3
- open issues
- * selection of smoothing factor, strength of prior, cross validation
- * GLS, does this really work this way
- * None of inherited results have been checked yet,
- I'm not sure if any need to be adjusted or if only interpretation changes
- One question is which results are based on likelihood (residuals) and which
- are based on "posterior" as for example bse and cov_params
- * helper functions to construct priors?
- * increasing penalization for ordered regressors, e.g. polynomials
- * compare with random/mixed effects/coefficient, like estimated priors
- there is something fishy with the result instance, some things, e.g.
- normalized_cov_params, don't look like they update correctly as we
- search over lambda -> some stale state again ?
- I added df_model to result class using the hatmatrix, but df_model is defined
- in model instance not in result instance. -> not clear where refactoring should
- occur. df_resid doesn't get updated correctly.
- problem with definition of df_model, it has 1 subtracted for constant
- """
- import numpy as np
- import statsmodels.base.model as base
- from statsmodels.regression.linear_model import OLS, GLS, RegressionResults
- def atleast_2dcols(x):
- x = np.asarray(x)
- if x.ndim == 1:
- x = x[:,None]
- return x
- class TheilGLS(GLS):
- '''GLS with probabilistic restrictions
- essentially Bayes with informative prior
- note: I'm making up the GLS part, might work only for OLS
- '''
- def __init__(self, endog, exog, r_matrix, q_matrix=None, sigma_prior=None, sigma=None):
- self.r_matrix = np.asarray(r_matrix)
- self.q_matrix = atleast_2dcols(q_matrix)
- if np.size(sigma_prior) == 1:
- sigma_prior = sigma_prior * np.eye(self.r_matrix.shape[0]) #no numerical shortcuts
- self.sigma_prior = sigma_prior
- self.sigma_prior_inv = np.linalg.pinv(sigma_prior) #or inv
- super(self.__class__, self).__init__(endog, exog, sigma=sigma)
- def fit(self, lambd=1.):
- #this does duplicate transformation, but I need resid not wresid
- res_gls = GLS(self.endog, self.exog, sigma=self.sigma).fit()
- self.res_gls = res_gls
- sigma2_e = res_gls.mse_resid
- r_matrix = self.r_matrix
- q_matrix = self.q_matrix
- sigma_prior_inv = self.sigma_prior_inv
- x = self.wexog
- y = self.wendog[:,None]
- #why are sigma2_e * lambd multiplied, not ratio?
- #larger lambd -> stronger prior (it's not the variance)
- #print 'lambd inside fit', lambd
- xpx = np.dot(x.T, x) + \
- sigma2_e * lambd * np.dot(r_matrix.T, np.dot(sigma_prior_inv, r_matrix))
- xpy = np.dot(x.T, y) + \
- sigma2_e * lambd * np.dot(r_matrix.T, np.dot(sigma_prior_inv, q_matrix))
- #xpy = xpy[:,None]
- xpxi = np.linalg.pinv(xpx)
- params = np.dot(xpxi, xpy) #or solve
- params = np.squeeze(params)
- self.normalized_cov_params = xpxi #why attach it to self, i.e. model?
- lfit = TheilRegressionResults(self, params,
- normalized_cov_params=xpxi)
- lfit.penalization_factor = lambd
- return lfit
- def fit_minic(self):
- #this doesn't make sense, since number of parameters stays unchanged
- #need leave-one-out, gcv; or some penalization for weak priors
- #added extra penalization for lambd
- def get_bic(lambd):
- #return self.fit(lambd).bic #+lambd #+ 1./lambd #added 1/lambd for checking
- #return self.fit(lambd).gcv()
- #return self.fit(lambd).cv()
- return self.fit(lambd).aicc()
- from scipy import optimize
- lambd = optimize.fmin(get_bic, 1.)
- return lambd
- #TODO:
- #I need the hatmatrix in the model if I want to do iterative fitting, e.g. GCV
- #move to model or use it from a results instance inside the model,
- # each call to fit returns results instance
- class TheilRegressionResults(RegressionResults):
- #cache
- def hatmatrix_diag(self):
- '''
- diag(X' xpxi X)
- where xpxi = (X'X + lambd * sigma_prior)^{-1}
- Notes
- -----
- uses wexog, so this includes weights or sigma - check this case
- not clear whether I need to multiply by sigmahalf, i.e.
- (W^{-0.5} X) (X' W X)^{-1} (W^{-0.5} X)' or
- (W X) (X' W X)^{-1} (W X)'
- projection y_hat = H y or in terms of transformed variables (W^{-0.5} y)
- might be wrong for WLS and GLS case
- '''
- xpxi = self.model.normalized_cov_params
- #something fishy with self.normalized_cov_params in result, doesn't update
- #print self.model.wexog.shape, np.dot(xpxi, self.model.wexog.T).shape
- return (self.model.wexog * np.dot(xpxi, self.model.wexog.T).T).sum(1)
- def hatmatrix_trace(self):
- return self.hatmatrix_diag().sum()
- #this doesn't update df_resid
- @property #needs to be property or attribute (no call)
- def df_model(self):
- return self.hatmatrix_trace()
- #Note: mse_resid uses df_resid not nobs-k_vars, which might differ if df_model, tr(H), is used
- #in paper for gcv ess/nobs is used instead of mse_resid
- def gcv(self):
- return self.mse_resid / (1. - self.hatmatrix_trace() / self.nobs)**2
- def cv(self):
- return ((self.resid / (1. - self.hatmatrix_diag()))**2).sum() / self.nobs
- def aicc(self):
- aic = np.log(self.mse_resid) + 1
- aic += 2 * (1. + self.hatmatrix_trace()) / (self.nobs - self.hatmatrix_trace() -2)
- return aic
- #contrast/restriction matrices, temporary location
- def coef_restriction_meandiff(n_coeffs, n_vars=None, position=0):
- reduced = np.eye(n_coeffs) - 1./n_coeffs
- if n_vars is None:
- return reduced
- else:
- full = np.zeros((n_coeffs, n_vars))
- full[:, position:position+n_coeffs] = reduced
- return full
- def coef_restriction_diffbase(n_coeffs, n_vars=None, position=0, base_idx=0):
- reduced = -np.eye(n_coeffs) #make all rows, drop one row later
- reduced[:, base_idx] = 1
- keep = range(n_coeffs)
- del keep[base_idx]
- reduced = np.take(reduced, keep, axis=0)
- if n_vars is None:
- return reduced
- else:
- full = np.zeros((n_coeffs-1, n_vars))
- full[:, position:position+n_coeffs] = reduced
- return full
- def next_odd(d):
- return d + (1 - d % 2)
- def coef_restriction_diffseq(n_coeffs, degree=1, n_vars=None, position=0, base_idx=0):
- #check boundaries, returns "valid" ?
- if degree == 1:
- diff_coeffs = [-1, 1]
- n_points = 2
- elif degree > 1:
- from scipy import misc
- n_points = next_odd(degree + 1) #next odd integer after degree+1
- diff_coeffs = misc.central_diff_weights(n_points, ndiv=degree)
- dff = np.concatenate((diff_coeffs, np.zeros(n_coeffs - len(diff_coeffs))))
- from scipy import linalg
- reduced = linalg.toeplitz(dff, np.zeros(n_coeffs - len(diff_coeffs) + 1)).T
- #reduced = np.kron(np.eye(n_coeffs-n_points), diff_coeffs)
- if n_vars is None:
- return reduced
- else:
- full = np.zeros((n_coeffs-1, n_vars))
- full[:, position:position+n_coeffs] = reduced
- return full
- ##
- ## R = np.c_[np.zeros((n_groups, k_vars-1)), np.eye(n_groups)]
- ## r = np.zeros(n_groups)
- ## R = np.c_[np.zeros((n_groups-1, k_vars)),
- ## np.eye(n_groups-1)-1./n_groups * np.ones((n_groups-1, n_groups-1))]
- if __name__ == '__main__':
- import numpy as np
- import statsmodels.api as sm
- examples = [2]
- np.random.seed(765367)
- np.random.seed(97653679)
- nsample = 100
- x = np.linspace(0,10, nsample)
- X = sm.add_constant(np.column_stack((x, x**2, (x/5.)**3)), prepend=True)
- beta = np.array([10, 1, 0.1, 0.5])
- y = np.dot(X, beta) + np.random.normal(size=nsample)
- res_ols = sm.OLS(y, X).fit()
- R = [[0, 0, 0 , 1]]
- r = [0] #, 0, 0 , 0]
- lambd = 1 #1e-4
- mod = TheilGLS(y, X, r_matrix=R, q_matrix=r, sigma_prior=lambd)
- res = mod.fit()
- print res_ols.params
- print res.params
- #example 2
- #I need more flexible penalization in example, the penalization should
- #get stronger for higher order terms
- #np.random.seed(1)
- nobs = 200
- k_vars = 10
- k_true = 6
- sig_e = 0.25 #0.5
- x = np.linspace(-2,2, nobs)
- #X = sm.add_constant(np.column_stack((x, x**2, (x/5.)**3)), prepend=True)
- X = (x/x.max())[:,None]**np.arange(k_vars)
- beta = np.zeros(k_vars)
- beta[:k_true] = np.array([1, -2, 0.5, 1.5, -0.1, 0.1])[:k_true]
- y_true = np.dot(X, beta)
- y = y_true + sig_e * np.random.normal(size=nobs)
- res_ols = sm.OLS(y, X).fit()
- #R = np.c_[np.zeros((k_vars-4, 4)), np.eye(k_vars-4)] # has two large true coefficients penalized
- not_penalized = 4
- R = np.c_[np.zeros((k_vars-not_penalized, not_penalized)), np.eye(k_vars-not_penalized)]
- #increasingly strong penalization
- R = np.c_[np.zeros((k_vars-not_penalized, not_penalized)), np.diag((1+2*np.arange(k_vars-not_penalized)))]
- r = np.zeros(k_vars-not_penalized)
- ## R = -coef_restriction_diffseq(6, 1, n_vars=10, position=4) #doesn't make sense for polynomial
- ## R = np.vstack((R, np.zeros(R.shape[1])))
- ## R[-1,-1] = 1
- r = np.zeros(R.shape[0])
- lambd = 2 #1e-4
- mod = TheilGLS(y, X, r_matrix=R, q_matrix=r, sigma_prior=lambd)
- res = mod.fit()
- print res_ols.params
- print res.params
- res_bic = mod.fit_minic() #this will just return zero
- res = mod.fit(res_bic)
- print res_bic
- for lambd in np.linspace(0, 80, 21):
- res_l = mod.fit(lambd)
- #print lambd, res_l.params[-2:], res_l.bic, res_l.bic + 1./lambd, res.df_model
- print lambd, res_l.params[-2:], res_l.bic, res.df_model, np.trace(res.normalized_cov_params)
- import matplotlib.pyplot as plt
- plt.figure()
- plt.plot(beta, 'k-o', label='true')
- plt.plot(res_ols.params, '-o', label='ols')
- plt.plot(res.params, '-o', label='theil')
- plt.legend()
- plt.title('Polynomial fitting: estimated coefficients')
- plt.figure()
- plt.plot(y, 'o')
- plt.plot(y_true, 'k-', label='true')
- plt.plot(res_ols.fittedvalues, '-', label='ols')
- plt.plot(res.fittedvalues, '-', label='theil')
- plt.legend()
- plt.title('Polynomial fitting: fitted values')
- #plt.show()
- if 3 in examples:
- #example 3
- nobs = 600
- nobs_i = 20
- n_groups = nobs // nobs_i
- k_vars = 3
- from statsmodels.sandbox.panel.random_panel import PanelSample
- dgp = PanelSample(nobs, k_vars, n_groups)
- dgp.group_means = 2 + np.random.randn(n_groups) #add random intercept
- print 'seed', dgp.seed
- y = dgp.generate_panel()
- X = np.column_stack((dgp.exog[:,1:],
- dgp.groups[:,None] == np.arange(n_groups)))
- res_ols = sm.OLS(y, X).fit()
- R = np.c_[np.zeros((n_groups, k_vars-1)), np.eye(n_groups)]
- r = np.zeros(n_groups)
- R = np.c_[np.zeros((n_groups-1, k_vars)),
- np.eye(n_groups-1)-1./n_groups * np.ones((n_groups-1, n_groups-1))]
- r = np.zeros(n_groups-1)
- R[:, k_vars-1] = -1
- lambd = 1 #1e-4
- mod = TheilGLS(y, X, r_matrix=R, q_matrix=r, sigma_prior=lambd)
- res = mod.fit()
- print res.params
- params_l = []
- for lambd in np.linspace(0, 20, 21):
- params_l.append(mod.fit(5.*lambd).params)
- params_l = np.array(params_l)
- plt.figure()
- plt.plot(params_l.T)
- plt.title('Panel Data with random intercept: shrinkage to being equal')
- plt.xlabel('parameter index')
- plt.figure()
- plt.plot(params_l[:,k_vars:])
- plt.title('Panel Data with random intercept: shrinkage to being equal')
- plt.xlabel('strength of prior')
- #plt.show()