/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/examples/example_enhanced_boxplots.py
Python | 98 lines | 65 code | 26 blank | 7 comment | 3 complexity | 8d8f47db780a5a27dd167defec6193e7 MD5 | raw file
- import numpy as np
- import matplotlib.pyplot as plt
- import statsmodels.api as sm
- # Necessary to make horizontal axis labels fit
- plt.rcParams['figure.subplot.bottom'] = 0.23
- data = sm.datasets.anes96.load_pandas()
- party_ID = np.arange(7)
- labels = ["Strong Democrat", "Weak Democrat", "Independent-Democrat",
- "Independent-Independent", "Independent-Republican",
- "Weak Republican", "Strong Republican"]
- # Group age by party ID.
- age = [data.exog['age'][data.endog == id] for id in party_ID]
- # Create a violin plot.
- fig = plt.figure()
- ax = fig.add_subplot(111)
- sm.graphics.violinplot(age, ax=ax, labels=labels,
- plot_opts={'cutoff_val':5, 'cutoff_type':'abs',
- 'label_fontsize':'small',
- 'label_rotation':30})
- ax.set_xlabel("Party identification of respondent.")
- ax.set_ylabel("Age")
- ax.set_title("US national election '96 - Age & Party Identification")
- # Create a bean plot.
- fig2 = plt.figure()
- ax = fig2.add_subplot(111)
- sm.graphics.beanplot(age, ax=ax, labels=labels,
- plot_opts={'cutoff_val':5, 'cutoff_type':'abs',
- 'label_fontsize':'small',
- 'label_rotation':30})
- ax.set_xlabel("Party identification of respondent.")
- ax.set_ylabel("Age")
- ax.set_title("US national election '96 - Age & Party Identification")
- # Create a jitter plot.
- fig3 = plt.figure()
- ax = fig3.add_subplot(111)
- plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small',
- 'label_rotation':30, 'violin_fc':(0.8, 0.8, 0.8),
- 'jitter_marker':'.', 'jitter_marker_size':3, 'bean_color':'#FF6F00',
- 'bean_mean_color':'#009D91'}
- sm.graphics.beanplot(age, ax=ax, labels=labels, jitter=True,
- plot_opts=plot_opts)
- ax.set_xlabel("Party identification of respondent.")
- ax.set_ylabel("Age")
- ax.set_title("US national election '96 - Age & Party Identification")
- # Create an asymmetrical jitter plot.
- ix = data.exog['income'] < 16 # incomes < $30k
- age = data.exog['age'][ix]
- endog = data.endog[ix]
- age_lower_income = [age[endog == id] for id in party_ID]
- ix = data.exog['income'] >= 20 # incomes > $50k
- age = data.exog['age'][ix]
- endog = data.endog[ix]
- age_higher_income = [age[endog == id] for id in party_ID]
- fig = plt.figure()
- ax = fig.add_subplot(111)
- plot_opts['violin_fc'] = (0.5, 0.5, 0.5)
- plot_opts['bean_show_mean'] = False
- plot_opts['bean_show_median'] = False
- plot_opts['bean_legend_text'] = 'Income < \$30k'
- plot_opts['cutoff_val'] = 10
- sm.graphics.beanplot(age_lower_income, ax=ax, labels=labels, side='left',
- jitter=True, plot_opts=plot_opts)
- plot_opts['violin_fc'] = (0.7, 0.7, 0.7)
- plot_opts['bean_color'] = '#009D91'
- plot_opts['bean_legend_text'] = 'Income > \$50k'
- sm.graphics.beanplot(age_higher_income, ax=ax, labels=labels, side='right',
- jitter=True, plot_opts=plot_opts)
- ax.set_xlabel("Party identification of respondent.")
- ax.set_ylabel("Age")
- ax.set_title("US national election '96 - Age & Party Identification")
- # Show all plots.
- plt.show()