PageRenderTime 21ms CodeModel.GetById 19ms RepoModel.GetById 0ms app.codeStats 0ms

/arch/powerpc/mm/slb.c

https://gitlab.com/openbar/rpi-linux
C | 349 lines | 216 code | 51 blank | 82 comment | 28 complexity | 148d2f5539c8c90dda8c1710e2e22ea8 MD5 | raw file
  1. /*
  2. * PowerPC64 SLB support.
  3. *
  4. * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5. * Based on earlier code written by:
  6. * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7. * Copyright (c) 2001 Dave Engebretsen
  8. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <asm/pgtable.h>
  17. #include <asm/mmu.h>
  18. #include <asm/mmu_context.h>
  19. #include <asm/paca.h>
  20. #include <asm/cputable.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/smp.h>
  23. #include <linux/compiler.h>
  24. #include <asm/udbg.h>
  25. #include <asm/code-patching.h>
  26. enum slb_index {
  27. LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
  28. VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
  29. KSTACK_INDEX = 2, /* Kernel stack map */
  30. };
  31. extern void slb_allocate_realmode(unsigned long ea);
  32. extern void slb_allocate_user(unsigned long ea);
  33. static void slb_allocate(unsigned long ea)
  34. {
  35. /* Currently, we do real mode for all SLBs including user, but
  36. * that will change if we bring back dynamic VSIDs
  37. */
  38. slb_allocate_realmode(ea);
  39. }
  40. #define slb_esid_mask(ssize) \
  41. (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
  42. static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
  43. enum slb_index index)
  44. {
  45. return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
  46. }
  47. static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
  48. unsigned long flags)
  49. {
  50. return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
  51. ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
  52. }
  53. static inline void slb_shadow_update(unsigned long ea, int ssize,
  54. unsigned long flags,
  55. enum slb_index index)
  56. {
  57. struct slb_shadow *p = get_slb_shadow();
  58. /*
  59. * Clear the ESID first so the entry is not valid while we are
  60. * updating it. No write barriers are needed here, provided
  61. * we only update the current CPU's SLB shadow buffer.
  62. */
  63. p->save_area[index].esid = 0;
  64. p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
  65. p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
  66. }
  67. static inline void slb_shadow_clear(enum slb_index index)
  68. {
  69. get_slb_shadow()->save_area[index].esid = 0;
  70. }
  71. static inline void create_shadowed_slbe(unsigned long ea, int ssize,
  72. unsigned long flags,
  73. enum slb_index index)
  74. {
  75. /*
  76. * Updating the shadow buffer before writing the SLB ensures
  77. * we don't get a stale entry here if we get preempted by PHYP
  78. * between these two statements.
  79. */
  80. slb_shadow_update(ea, ssize, flags, index);
  81. asm volatile("slbmte %0,%1" :
  82. : "r" (mk_vsid_data(ea, ssize, flags)),
  83. "r" (mk_esid_data(ea, ssize, index))
  84. : "memory" );
  85. }
  86. static void __slb_flush_and_rebolt(void)
  87. {
  88. /* If you change this make sure you change SLB_NUM_BOLTED
  89. * and PR KVM appropriately too. */
  90. unsigned long linear_llp, vmalloc_llp, lflags, vflags;
  91. unsigned long ksp_esid_data, ksp_vsid_data;
  92. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  93. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  94. lflags = SLB_VSID_KERNEL | linear_llp;
  95. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  96. ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
  97. if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
  98. ksp_esid_data &= ~SLB_ESID_V;
  99. ksp_vsid_data = 0;
  100. slb_shadow_clear(KSTACK_INDEX);
  101. } else {
  102. /* Update stack entry; others don't change */
  103. slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
  104. ksp_vsid_data =
  105. be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
  106. }
  107. /* We need to do this all in asm, so we're sure we don't touch
  108. * the stack between the slbia and rebolting it. */
  109. asm volatile("isync\n"
  110. "slbia\n"
  111. /* Slot 1 - first VMALLOC segment */
  112. "slbmte %0,%1\n"
  113. /* Slot 2 - kernel stack */
  114. "slbmte %2,%3\n"
  115. "isync"
  116. :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
  117. "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
  118. "r"(ksp_vsid_data),
  119. "r"(ksp_esid_data)
  120. : "memory");
  121. }
  122. void slb_flush_and_rebolt(void)
  123. {
  124. WARN_ON(!irqs_disabled());
  125. /*
  126. * We can't take a PMU exception in the following code, so hard
  127. * disable interrupts.
  128. */
  129. hard_irq_disable();
  130. __slb_flush_and_rebolt();
  131. get_paca()->slb_cache_ptr = 0;
  132. }
  133. void slb_vmalloc_update(void)
  134. {
  135. unsigned long vflags;
  136. vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
  137. slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
  138. slb_flush_and_rebolt();
  139. }
  140. /* Helper function to compare esids. There are four cases to handle.
  141. * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
  142. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
  143. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
  144. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
  145. */
  146. static inline int esids_match(unsigned long addr1, unsigned long addr2)
  147. {
  148. int esid_1t_count;
  149. /* System is not 1T segment size capable. */
  150. if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
  151. return (GET_ESID(addr1) == GET_ESID(addr2));
  152. esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
  153. ((addr2 >> SID_SHIFT_1T) != 0));
  154. /* both addresses are < 1T */
  155. if (esid_1t_count == 0)
  156. return (GET_ESID(addr1) == GET_ESID(addr2));
  157. /* One address < 1T, the other > 1T. Not a match */
  158. if (esid_1t_count == 1)
  159. return 0;
  160. /* Both addresses are > 1T. */
  161. return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
  162. }
  163. /* Flush all user entries from the segment table of the current processor. */
  164. void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
  165. {
  166. unsigned long offset;
  167. unsigned long slbie_data = 0;
  168. unsigned long pc = KSTK_EIP(tsk);
  169. unsigned long stack = KSTK_ESP(tsk);
  170. unsigned long exec_base;
  171. /*
  172. * We need interrupts hard-disabled here, not just soft-disabled,
  173. * so that a PMU interrupt can't occur, which might try to access
  174. * user memory (to get a stack trace) and possible cause an SLB miss
  175. * which would update the slb_cache/slb_cache_ptr fields in the PACA.
  176. */
  177. hard_irq_disable();
  178. offset = get_paca()->slb_cache_ptr;
  179. if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
  180. offset <= SLB_CACHE_ENTRIES) {
  181. int i;
  182. asm volatile("isync" : : : "memory");
  183. for (i = 0; i < offset; i++) {
  184. slbie_data = (unsigned long)get_paca()->slb_cache[i]
  185. << SID_SHIFT; /* EA */
  186. slbie_data |= user_segment_size(slbie_data)
  187. << SLBIE_SSIZE_SHIFT;
  188. slbie_data |= SLBIE_C; /* C set for user addresses */
  189. asm volatile("slbie %0" : : "r" (slbie_data));
  190. }
  191. asm volatile("isync" : : : "memory");
  192. } else {
  193. __slb_flush_and_rebolt();
  194. }
  195. /* Workaround POWER5 < DD2.1 issue */
  196. if (offset == 1 || offset > SLB_CACHE_ENTRIES)
  197. asm volatile("slbie %0" : : "r" (slbie_data));
  198. get_paca()->slb_cache_ptr = 0;
  199. get_paca()->context = mm->context;
  200. /*
  201. * preload some userspace segments into the SLB.
  202. * Almost all 32 and 64bit PowerPC executables are linked at
  203. * 0x10000000 so it makes sense to preload this segment.
  204. */
  205. exec_base = 0x10000000;
  206. if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
  207. is_kernel_addr(exec_base))
  208. return;
  209. slb_allocate(pc);
  210. if (!esids_match(pc, stack))
  211. slb_allocate(stack);
  212. if (!esids_match(pc, exec_base) &&
  213. !esids_match(stack, exec_base))
  214. slb_allocate(exec_base);
  215. }
  216. static inline void patch_slb_encoding(unsigned int *insn_addr,
  217. unsigned int immed)
  218. {
  219. /*
  220. * This function patches either an li or a cmpldi instruction with
  221. * a new immediate value. This relies on the fact that both li
  222. * (which is actually addi) and cmpldi both take a 16-bit immediate
  223. * value, and it is situated in the same location in the instruction,
  224. * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
  225. * The signedness of the immediate operand differs between the two
  226. * instructions however this code is only ever patching a small value,
  227. * much less than 1 << 15, so we can get away with it.
  228. * To patch the value we read the existing instruction, clear the
  229. * immediate value, and or in our new value, then write the instruction
  230. * back.
  231. */
  232. unsigned int insn = (*insn_addr & 0xffff0000) | immed;
  233. patch_instruction(insn_addr, insn);
  234. }
  235. extern u32 slb_miss_kernel_load_linear[];
  236. extern u32 slb_miss_kernel_load_io[];
  237. extern u32 slb_compare_rr_to_size[];
  238. extern u32 slb_miss_kernel_load_vmemmap[];
  239. void slb_set_size(u16 size)
  240. {
  241. if (mmu_slb_size == size)
  242. return;
  243. mmu_slb_size = size;
  244. patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
  245. }
  246. void slb_initialize(void)
  247. {
  248. unsigned long linear_llp, vmalloc_llp, io_llp;
  249. unsigned long lflags, vflags;
  250. static int slb_encoding_inited;
  251. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  252. unsigned long vmemmap_llp;
  253. #endif
  254. /* Prepare our SLB miss handler based on our page size */
  255. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  256. io_llp = mmu_psize_defs[mmu_io_psize].sllp;
  257. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  258. get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
  259. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  260. vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
  261. #endif
  262. if (!slb_encoding_inited) {
  263. slb_encoding_inited = 1;
  264. patch_slb_encoding(slb_miss_kernel_load_linear,
  265. SLB_VSID_KERNEL | linear_llp);
  266. patch_slb_encoding(slb_miss_kernel_load_io,
  267. SLB_VSID_KERNEL | io_llp);
  268. patch_slb_encoding(slb_compare_rr_to_size,
  269. mmu_slb_size);
  270. pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
  271. pr_devel("SLB: io LLP = %04lx\n", io_llp);
  272. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  273. patch_slb_encoding(slb_miss_kernel_load_vmemmap,
  274. SLB_VSID_KERNEL | vmemmap_llp);
  275. pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
  276. #endif
  277. }
  278. get_paca()->stab_rr = SLB_NUM_BOLTED;
  279. lflags = SLB_VSID_KERNEL | linear_llp;
  280. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  281. /* Invalidate the entire SLB (even entry 0) & all the ERATS */
  282. asm volatile("isync":::"memory");
  283. asm volatile("slbmte %0,%0"::"r" (0) : "memory");
  284. asm volatile("isync; slbia; isync":::"memory");
  285. create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
  286. create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
  287. /* For the boot cpu, we're running on the stack in init_thread_union,
  288. * which is in the first segment of the linear mapping, and also
  289. * get_paca()->kstack hasn't been initialized yet.
  290. * For secondary cpus, we need to bolt the kernel stack entry now.
  291. */
  292. slb_shadow_clear(KSTACK_INDEX);
  293. if (raw_smp_processor_id() != boot_cpuid &&
  294. (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
  295. create_shadowed_slbe(get_paca()->kstack,
  296. mmu_kernel_ssize, lflags, KSTACK_INDEX);
  297. asm volatile("isync":::"memory");
  298. }