/example/image-classification/train_mnist.py
https://gitlab.com/alvinahmadov2/mxnet · Python · 122 lines · 101 code · 10 blank · 11 comment · 10 complexity · 4faae946ac24bdfbea23e6349847a075 MD5 · raw file
- import find_mxnet
- import mxnet as mx
- import argparse
- import os, sys
- import train_model
- parser = argparse.ArgumentParser(description='train an image classifer on mnist')
- parser.add_argument('--network', type=str, default='mlp',
- choices = ['mlp', 'lenet'],
- help = 'the cnn to use')
- parser.add_argument('--data-dir', type=str, default='mnist/',
- help='the input data directory')
- parser.add_argument('--gpus', type=str,
- help='the gpus will be used, e.g "0,1,2,3"')
- parser.add_argument('--num-examples', type=int, default=60000,
- help='the number of training examples')
- parser.add_argument('--batch-size', type=int, default=128,
- help='the batch size')
- parser.add_argument('--lr', type=float, default=.1,
- help='the initial learning rate')
- parser.add_argument('--model-prefix', type=str,
- help='the prefix of the model to load/save')
- parser.add_argument('--num-epochs', type=int, default=10,
- help='the number of training epochs')
- parser.add_argument('--load-epoch', type=int,
- help="load the model on an epoch using the model-prefix")
- parser.add_argument('--kv-store', type=str, default='local',
- help='the kvstore type')
- parser.add_argument('--lr-factor', type=float, default=1,
- help='times the lr with a factor for every lr-factor-epoch epoch')
- parser.add_argument('--lr-factor-epoch', type=float, default=1,
- help='the number of epoch to factor the lr, could be .5')
- args = parser.parse_args()
- def _download(data_dir):
- if not os.path.isdir(data_dir):
- os.system("mkdir " + data_dir)
- os.chdir(data_dir)
- if (not os.path.exists('train-images-idx3-ubyte')) or \
- (not os.path.exists('train-labels-idx1-ubyte')) or \
- (not os.path.exists('t10k-images-idx3-ubyte')) or \
- (not os.path.exists('t10k-labels-idx1-ubyte')):
- os.system("wget http://webdocs.cs.ualberta.ca/~bx3/data/mnist.zip")
- os.system("unzip -u mnist.zip; rm mnist.zip")
- os.chdir("..")
- def get_mlp():
- """
- multi-layer perceptron
- """
- data = mx.symbol.Variable('data')
- fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
- act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
- fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
- act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
- fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10)
- mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
- return mlp
- def get_lenet():
- """
- LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
- Haffner. "Gradient-based learning applied to document recognition."
- Proceedings of the IEEE (1998)
- """
- data = mx.symbol.Variable('data')
- # first conv
- conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20)
- tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh")
- pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max",
- kernel=(2,2), stride=(2,2))
- # second conv
- conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50)
- tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh")
- pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max",
- kernel=(2,2), stride=(2,2))
- # first fullc
- flatten = mx.symbol.Flatten(data=pool2)
- fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
- tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh")
- # second fullc
- fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
- # loss
- lenet = mx.symbol.SoftmaxOutput(data=fc2, name='softmax')
- return lenet
- if args.network == 'mlp':
- data_shape = (784, )
- net = get_mlp()
- else:
- data_shape = (1, 28, 28)
- net = get_lenet()
- def get_iterator(args, kv):
- data_dir = args.data_dir
- if '://' not in args.data_dir:
- _download(args.data_dir)
- flat = False if len(data_shape) == 3 else True
- train = mx.io.MNISTIter(
- image = data_dir + "train-images-idx3-ubyte",
- label = data_dir + "train-labels-idx1-ubyte",
- input_shape = data_shape,
- batch_size = args.batch_size,
- shuffle = True,
- flat = flat,
- num_parts = kv.num_workers,
- part_index = kv.rank)
- val = mx.io.MNISTIter(
- image = data_dir + "t10k-images-idx3-ubyte",
- label = data_dir + "t10k-labels-idx1-ubyte",
- input_shape = data_shape,
- batch_size = args.batch_size,
- flat = flat,
- num_parts = kv.num_workers,
- part_index = kv.rank)
- return (train, val)
- # train
- train_model.fit(args, net, get_iterator)