/drivers/clocksource/hyperv_timer.c
C | 568 lines | 330 code | 77 blank | 161 comment | 31 complexity | 2ad2ce827882db920d6d993055f4d750 MD5 | raw file
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Clocksource driver for the synthetic counter and timers
- * provided by the Hyper-V hypervisor to guest VMs, as described
- * in the Hyper-V Top Level Functional Spec (TLFS). This driver
- * is instruction set architecture independent.
- *
- * Copyright (C) 2019, Microsoft, Inc.
- *
- * Author: Michael Kelley <mikelley@microsoft.com>
- */
- #include <linux/percpu.h>
- #include <linux/cpumask.h>
- #include <linux/clockchips.h>
- #include <linux/clocksource.h>
- #include <linux/sched_clock.h>
- #include <linux/mm.h>
- #include <linux/cpuhotplug.h>
- #include <linux/interrupt.h>
- #include <linux/irq.h>
- #include <linux/acpi.h>
- #include <clocksource/hyperv_timer.h>
- #include <asm/hyperv-tlfs.h>
- #include <asm/mshyperv.h>
- static struct clock_event_device __percpu *hv_clock_event;
- static u64 hv_sched_clock_offset __ro_after_init;
- /*
- * If false, we're using the old mechanism for stimer0 interrupts
- * where it sends a VMbus message when it expires. The old
- * mechanism is used when running on older versions of Hyper-V
- * that don't support Direct Mode. While Hyper-V provides
- * four stimer's per CPU, Linux uses only stimer0.
- *
- * Because Direct Mode does not require processing a VMbus
- * message, stimer interrupts can be enabled earlier in the
- * process of booting a CPU, and consistent with when timer
- * interrupts are enabled for other clocksource drivers.
- * However, for legacy versions of Hyper-V when Direct Mode
- * is not enabled, setting up stimer interrupts must be
- * delayed until VMbus is initialized and can process the
- * interrupt message.
- */
- static bool direct_mode_enabled;
- static int stimer0_irq = -1;
- static int stimer0_message_sint;
- static DEFINE_PER_CPU(long, stimer0_evt);
- /*
- * Common code for stimer0 interrupts coming via Direct Mode or
- * as a VMbus message.
- */
- void hv_stimer0_isr(void)
- {
- struct clock_event_device *ce;
- ce = this_cpu_ptr(hv_clock_event);
- ce->event_handler(ce);
- }
- EXPORT_SYMBOL_GPL(hv_stimer0_isr);
- /*
- * stimer0 interrupt handler for architectures that support
- * per-cpu interrupts, which also implies Direct Mode.
- */
- static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
- {
- hv_stimer0_isr();
- return IRQ_HANDLED;
- }
- static int hv_ce_set_next_event(unsigned long delta,
- struct clock_event_device *evt)
- {
- u64 current_tick;
- current_tick = hv_read_reference_counter();
- current_tick += delta;
- hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
- return 0;
- }
- static int hv_ce_shutdown(struct clock_event_device *evt)
- {
- hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
- hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
- if (direct_mode_enabled && stimer0_irq >= 0)
- disable_percpu_irq(stimer0_irq);
- return 0;
- }
- static int hv_ce_set_oneshot(struct clock_event_device *evt)
- {
- union hv_stimer_config timer_cfg;
- timer_cfg.as_uint64 = 0;
- timer_cfg.enable = 1;
- timer_cfg.auto_enable = 1;
- if (direct_mode_enabled) {
- /*
- * When it expires, the timer will directly interrupt
- * on the specified hardware vector/IRQ.
- */
- timer_cfg.direct_mode = 1;
- timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
- if (stimer0_irq >= 0)
- enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
- } else {
- /*
- * When it expires, the timer will generate a VMbus message,
- * to be handled by the normal VMbus interrupt handler.
- */
- timer_cfg.direct_mode = 0;
- timer_cfg.sintx = stimer0_message_sint;
- }
- hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
- return 0;
- }
- /*
- * hv_stimer_init - Per-cpu initialization of the clockevent
- */
- static int hv_stimer_init(unsigned int cpu)
- {
- struct clock_event_device *ce;
- if (!hv_clock_event)
- return 0;
- ce = per_cpu_ptr(hv_clock_event, cpu);
- ce->name = "Hyper-V clockevent";
- ce->features = CLOCK_EVT_FEAT_ONESHOT;
- ce->cpumask = cpumask_of(cpu);
- ce->rating = 1000;
- ce->set_state_shutdown = hv_ce_shutdown;
- ce->set_state_oneshot = hv_ce_set_oneshot;
- ce->set_next_event = hv_ce_set_next_event;
- clockevents_config_and_register(ce,
- HV_CLOCK_HZ,
- HV_MIN_DELTA_TICKS,
- HV_MAX_MAX_DELTA_TICKS);
- return 0;
- }
- /*
- * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
- */
- int hv_stimer_cleanup(unsigned int cpu)
- {
- struct clock_event_device *ce;
- if (!hv_clock_event)
- return 0;
- /*
- * In the legacy case where Direct Mode is not enabled
- * (which can only be on x86/64), stimer cleanup happens
- * relatively early in the CPU offlining process. We
- * must unbind the stimer-based clockevent device so
- * that the LAPIC timer can take over until clockevents
- * are no longer needed in the offlining process. Note
- * that clockevents_unbind_device() eventually calls
- * hv_ce_shutdown().
- *
- * The unbind should not be done when Direct Mode is
- * enabled because we may be on an architecture where
- * there are no other clockevent devices to fallback to.
- */
- ce = per_cpu_ptr(hv_clock_event, cpu);
- if (direct_mode_enabled)
- hv_ce_shutdown(ce);
- else
- clockevents_unbind_device(ce, cpu);
- return 0;
- }
- EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
- /*
- * These placeholders are overridden by arch specific code on
- * architectures that need special setup of the stimer0 IRQ because
- * they don't support per-cpu IRQs (such as x86/x64).
- */
- void __weak hv_setup_stimer0_handler(void (*handler)(void))
- {
- };
- void __weak hv_remove_stimer0_handler(void)
- {
- };
- /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
- static int hv_setup_stimer0_irq(void)
- {
- int ret;
- ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
- ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
- if (ret < 0) {
- pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
- return ret;
- }
- stimer0_irq = ret;
- ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
- "Hyper-V stimer0", &stimer0_evt);
- if (ret) {
- pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
- stimer0_irq, ret);
- acpi_unregister_gsi(stimer0_irq);
- stimer0_irq = -1;
- }
- return ret;
- }
- static void hv_remove_stimer0_irq(void)
- {
- if (stimer0_irq == -1) {
- hv_remove_stimer0_handler();
- } else {
- free_percpu_irq(stimer0_irq, &stimer0_evt);
- acpi_unregister_gsi(stimer0_irq);
- stimer0_irq = -1;
- }
- }
- /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
- int hv_stimer_alloc(bool have_percpu_irqs)
- {
- int ret;
- /*
- * Synthetic timers are always available except on old versions of
- * Hyper-V on x86. In that case, return as error as Linux will use a
- * clockevent based on emulated LAPIC timer hardware.
- */
- if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
- return -EINVAL;
- hv_clock_event = alloc_percpu(struct clock_event_device);
- if (!hv_clock_event)
- return -ENOMEM;
- direct_mode_enabled = ms_hyperv.misc_features &
- HV_STIMER_DIRECT_MODE_AVAILABLE;
- /*
- * If Direct Mode isn't enabled, the remainder of the initialization
- * is done later by hv_stimer_legacy_init()
- */
- if (!direct_mode_enabled)
- return 0;
- if (have_percpu_irqs) {
- ret = hv_setup_stimer0_irq();
- if (ret)
- goto free_clock_event;
- } else {
- hv_setup_stimer0_handler(hv_stimer0_isr);
- }
- /*
- * Since we are in Direct Mode, stimer initialization
- * can be done now with a CPUHP value in the same range
- * as other clockevent devices.
- */
- ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
- "clockevents/hyperv/stimer:starting",
- hv_stimer_init, hv_stimer_cleanup);
- if (ret < 0) {
- hv_remove_stimer0_irq();
- goto free_clock_event;
- }
- return ret;
- free_clock_event:
- free_percpu(hv_clock_event);
- hv_clock_event = NULL;
- return ret;
- }
- EXPORT_SYMBOL_GPL(hv_stimer_alloc);
- /*
- * hv_stimer_legacy_init -- Called from the VMbus driver to handle
- * the case when Direct Mode is not enabled, and the stimer
- * must be initialized late in the CPU onlining process.
- *
- */
- void hv_stimer_legacy_init(unsigned int cpu, int sint)
- {
- if (direct_mode_enabled)
- return;
- /*
- * This function gets called by each vCPU, so setting the
- * global stimer_message_sint value each time is conceptually
- * not ideal, but the value passed in is always the same and
- * it avoids introducing yet another interface into this
- * clocksource driver just to set the sint in the legacy case.
- */
- stimer0_message_sint = sint;
- (void)hv_stimer_init(cpu);
- }
- EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
- /*
- * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
- * handle the case when Direct Mode is not enabled, and the
- * stimer must be cleaned up early in the CPU offlining
- * process.
- */
- void hv_stimer_legacy_cleanup(unsigned int cpu)
- {
- if (direct_mode_enabled)
- return;
- (void)hv_stimer_cleanup(cpu);
- }
- EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
- /*
- * Do a global cleanup of clockevents for the cases of kexec and
- * vmbus exit
- */
- void hv_stimer_global_cleanup(void)
- {
- int cpu;
- /*
- * hv_stime_legacy_cleanup() will stop the stimer if Direct
- * Mode is not enabled, and fallback to the LAPIC timer.
- */
- for_each_present_cpu(cpu) {
- hv_stimer_legacy_cleanup(cpu);
- }
- if (!hv_clock_event)
- return;
- if (direct_mode_enabled) {
- cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
- hv_remove_stimer0_irq();
- stimer0_irq = -1;
- }
- free_percpu(hv_clock_event);
- hv_clock_event = NULL;
- }
- EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
- /*
- * Code and definitions for the Hyper-V clocksources. Two
- * clocksources are defined: one that reads the Hyper-V defined MSR, and
- * the other that uses the TSC reference page feature as defined in the
- * TLFS. The MSR version is for compatibility with old versions of
- * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
- */
- static union {
- struct ms_hyperv_tsc_page page;
- u8 reserved[PAGE_SIZE];
- } tsc_pg __aligned(PAGE_SIZE);
- struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
- {
- return &tsc_pg.page;
- }
- EXPORT_SYMBOL_GPL(hv_get_tsc_page);
- static u64 notrace read_hv_clock_tsc(void)
- {
- u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
- if (current_tick == U64_MAX)
- current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
- return current_tick;
- }
- static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
- {
- return read_hv_clock_tsc();
- }
- static u64 notrace read_hv_sched_clock_tsc(void)
- {
- return (read_hv_clock_tsc() - hv_sched_clock_offset) *
- (NSEC_PER_SEC / HV_CLOCK_HZ);
- }
- static void suspend_hv_clock_tsc(struct clocksource *arg)
- {
- u64 tsc_msr;
- /* Disable the TSC page */
- tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
- tsc_msr &= ~BIT_ULL(0);
- hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
- }
- static void resume_hv_clock_tsc(struct clocksource *arg)
- {
- phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
- u64 tsc_msr;
- /* Re-enable the TSC page */
- tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
- tsc_msr &= GENMASK_ULL(11, 0);
- tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
- hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
- }
- #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
- static int hv_cs_enable(struct clocksource *cs)
- {
- vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
- return 0;
- }
- #endif
- static struct clocksource hyperv_cs_tsc = {
- .name = "hyperv_clocksource_tsc_page",
- .rating = 500,
- .read = read_hv_clock_tsc_cs,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- .suspend= suspend_hv_clock_tsc,
- .resume = resume_hv_clock_tsc,
- #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
- .enable = hv_cs_enable,
- .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
- #else
- .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
- #endif
- };
- static u64 notrace read_hv_clock_msr(void)
- {
- /*
- * Read the partition counter to get the current tick count. This count
- * is set to 0 when the partition is created and is incremented in
- * 100 nanosecond units.
- */
- return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
- }
- static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
- {
- return read_hv_clock_msr();
- }
- static u64 notrace read_hv_sched_clock_msr(void)
- {
- return (read_hv_clock_msr() - hv_sched_clock_offset) *
- (NSEC_PER_SEC / HV_CLOCK_HZ);
- }
- static struct clocksource hyperv_cs_msr = {
- .name = "hyperv_clocksource_msr",
- .rating = 500,
- .read = read_hv_clock_msr_cs,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- };
- /*
- * Reference to pv_ops must be inline so objtool
- * detection of noinstr violations can work correctly.
- */
- #ifdef CONFIG_GENERIC_SCHED_CLOCK
- static __always_inline void hv_setup_sched_clock(void *sched_clock)
- {
- /*
- * We're on an architecture with generic sched clock (not x86/x64).
- * The Hyper-V sched clock read function returns nanoseconds, not
- * the normal 100ns units of the Hyper-V synthetic clock.
- */
- sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
- }
- #elif defined CONFIG_PARAVIRT
- static __always_inline void hv_setup_sched_clock(void *sched_clock)
- {
- /* We're on x86/x64 *and* using PV ops */
- paravirt_set_sched_clock(sched_clock);
- }
- #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
- static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
- #endif /* CONFIG_GENERIC_SCHED_CLOCK */
- static bool __init hv_init_tsc_clocksource(void)
- {
- u64 tsc_msr;
- phys_addr_t phys_addr;
- if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
- return false;
- if (hv_root_partition)
- return false;
- /*
- * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
- * handles frequency and offset changes due to live migration,
- * pause/resume, and other VM management operations. So lower the
- * Hyper-V Reference TSC rating, causing the generic TSC to be used.
- * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
- * TSC will be preferred over the virtualized ARM64 arch counter.
- * While the Hyper-V MSR clocksource won't be used since the
- * Reference TSC clocksource is present, change its rating as
- * well for consistency.
- */
- if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
- hyperv_cs_tsc.rating = 250;
- hyperv_cs_msr.rating = 250;
- }
- hv_read_reference_counter = read_hv_clock_tsc;
- phys_addr = virt_to_phys(hv_get_tsc_page());
- /*
- * The Hyper-V TLFS specifies to preserve the value of reserved
- * bits in registers. So read the existing value, preserve the
- * low order 12 bits, and add in the guest physical address
- * (which already has at least the low 12 bits set to zero since
- * it is page aligned). Also set the "enable" bit, which is bit 0.
- */
- tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
- tsc_msr &= GENMASK_ULL(11, 0);
- tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
- hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
- clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
- hv_sched_clock_offset = hv_read_reference_counter();
- hv_setup_sched_clock(read_hv_sched_clock_tsc);
- return true;
- }
- void __init hv_init_clocksource(void)
- {
- /*
- * Try to set up the TSC page clocksource. If it succeeds, we're
- * done. Otherwise, set up the MSR clocksource. At least one of
- * these will always be available except on very old versions of
- * Hyper-V on x86. In that case we won't have a Hyper-V
- * clocksource, but Linux will still run with a clocksource based
- * on the emulated PIT or LAPIC timer.
- */
- if (hv_init_tsc_clocksource())
- return;
- if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
- return;
- hv_read_reference_counter = read_hv_clock_msr;
- clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
- hv_sched_clock_offset = hv_read_reference_counter();
- hv_setup_sched_clock(read_hv_sched_clock_msr);
- }
- EXPORT_SYMBOL_GPL(hv_init_clocksource);