PageRenderTime 52ms CodeModel.GetById 16ms RepoModel.GetById 0ms app.codeStats 0ms

/net/core/skmsg.c

https://gitlab.com/deepcypher/linux
C | 1238 lines | 1010 code | 166 blank | 62 comment | 166 complexity | 8c6264658290c8d4e800c58b383164af MD5 | raw file
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
  3. #include <linux/skmsg.h>
  4. #include <linux/skbuff.h>
  5. #include <linux/scatterlist.h>
  6. #include <net/sock.h>
  7. #include <net/tcp.h>
  8. #include <net/tls.h>
  9. static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
  10. {
  11. if (msg->sg.end > msg->sg.start &&
  12. elem_first_coalesce < msg->sg.end)
  13. return true;
  14. if (msg->sg.end < msg->sg.start &&
  15. (elem_first_coalesce > msg->sg.start ||
  16. elem_first_coalesce < msg->sg.end))
  17. return true;
  18. return false;
  19. }
  20. int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
  21. int elem_first_coalesce)
  22. {
  23. struct page_frag *pfrag = sk_page_frag(sk);
  24. u32 osize = msg->sg.size;
  25. int ret = 0;
  26. len -= msg->sg.size;
  27. while (len > 0) {
  28. struct scatterlist *sge;
  29. u32 orig_offset;
  30. int use, i;
  31. if (!sk_page_frag_refill(sk, pfrag)) {
  32. ret = -ENOMEM;
  33. goto msg_trim;
  34. }
  35. orig_offset = pfrag->offset;
  36. use = min_t(int, len, pfrag->size - orig_offset);
  37. if (!sk_wmem_schedule(sk, use)) {
  38. ret = -ENOMEM;
  39. goto msg_trim;
  40. }
  41. i = msg->sg.end;
  42. sk_msg_iter_var_prev(i);
  43. sge = &msg->sg.data[i];
  44. if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
  45. sg_page(sge) == pfrag->page &&
  46. sge->offset + sge->length == orig_offset) {
  47. sge->length += use;
  48. } else {
  49. if (sk_msg_full(msg)) {
  50. ret = -ENOSPC;
  51. break;
  52. }
  53. sge = &msg->sg.data[msg->sg.end];
  54. sg_unmark_end(sge);
  55. sg_set_page(sge, pfrag->page, use, orig_offset);
  56. get_page(pfrag->page);
  57. sk_msg_iter_next(msg, end);
  58. }
  59. sk_mem_charge(sk, use);
  60. msg->sg.size += use;
  61. pfrag->offset += use;
  62. len -= use;
  63. }
  64. return ret;
  65. msg_trim:
  66. sk_msg_trim(sk, msg, osize);
  67. return ret;
  68. }
  69. EXPORT_SYMBOL_GPL(sk_msg_alloc);
  70. int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
  71. u32 off, u32 len)
  72. {
  73. int i = src->sg.start;
  74. struct scatterlist *sge = sk_msg_elem(src, i);
  75. struct scatterlist *sgd = NULL;
  76. u32 sge_len, sge_off;
  77. while (off) {
  78. if (sge->length > off)
  79. break;
  80. off -= sge->length;
  81. sk_msg_iter_var_next(i);
  82. if (i == src->sg.end && off)
  83. return -ENOSPC;
  84. sge = sk_msg_elem(src, i);
  85. }
  86. while (len) {
  87. sge_len = sge->length - off;
  88. if (sge_len > len)
  89. sge_len = len;
  90. if (dst->sg.end)
  91. sgd = sk_msg_elem(dst, dst->sg.end - 1);
  92. if (sgd &&
  93. (sg_page(sge) == sg_page(sgd)) &&
  94. (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
  95. sgd->length += sge_len;
  96. dst->sg.size += sge_len;
  97. } else if (!sk_msg_full(dst)) {
  98. sge_off = sge->offset + off;
  99. sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
  100. } else {
  101. return -ENOSPC;
  102. }
  103. off = 0;
  104. len -= sge_len;
  105. sk_mem_charge(sk, sge_len);
  106. sk_msg_iter_var_next(i);
  107. if (i == src->sg.end && len)
  108. return -ENOSPC;
  109. sge = sk_msg_elem(src, i);
  110. }
  111. return 0;
  112. }
  113. EXPORT_SYMBOL_GPL(sk_msg_clone);
  114. void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
  115. {
  116. int i = msg->sg.start;
  117. do {
  118. struct scatterlist *sge = sk_msg_elem(msg, i);
  119. if (bytes < sge->length) {
  120. sge->length -= bytes;
  121. sge->offset += bytes;
  122. sk_mem_uncharge(sk, bytes);
  123. break;
  124. }
  125. sk_mem_uncharge(sk, sge->length);
  126. bytes -= sge->length;
  127. sge->length = 0;
  128. sge->offset = 0;
  129. sk_msg_iter_var_next(i);
  130. } while (bytes && i != msg->sg.end);
  131. msg->sg.start = i;
  132. }
  133. EXPORT_SYMBOL_GPL(sk_msg_return_zero);
  134. void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
  135. {
  136. int i = msg->sg.start;
  137. do {
  138. struct scatterlist *sge = &msg->sg.data[i];
  139. int uncharge = (bytes < sge->length) ? bytes : sge->length;
  140. sk_mem_uncharge(sk, uncharge);
  141. bytes -= uncharge;
  142. sk_msg_iter_var_next(i);
  143. } while (i != msg->sg.end);
  144. }
  145. EXPORT_SYMBOL_GPL(sk_msg_return);
  146. static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
  147. bool charge)
  148. {
  149. struct scatterlist *sge = sk_msg_elem(msg, i);
  150. u32 len = sge->length;
  151. /* When the skb owns the memory we free it from consume_skb path. */
  152. if (!msg->skb) {
  153. if (charge)
  154. sk_mem_uncharge(sk, len);
  155. put_page(sg_page(sge));
  156. }
  157. memset(sge, 0, sizeof(*sge));
  158. return len;
  159. }
  160. static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
  161. bool charge)
  162. {
  163. struct scatterlist *sge = sk_msg_elem(msg, i);
  164. int freed = 0;
  165. while (msg->sg.size) {
  166. msg->sg.size -= sge->length;
  167. freed += sk_msg_free_elem(sk, msg, i, charge);
  168. sk_msg_iter_var_next(i);
  169. sk_msg_check_to_free(msg, i, msg->sg.size);
  170. sge = sk_msg_elem(msg, i);
  171. }
  172. consume_skb(msg->skb);
  173. sk_msg_init(msg);
  174. return freed;
  175. }
  176. int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
  177. {
  178. return __sk_msg_free(sk, msg, msg->sg.start, false);
  179. }
  180. EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
  181. int sk_msg_free(struct sock *sk, struct sk_msg *msg)
  182. {
  183. return __sk_msg_free(sk, msg, msg->sg.start, true);
  184. }
  185. EXPORT_SYMBOL_GPL(sk_msg_free);
  186. static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
  187. u32 bytes, bool charge)
  188. {
  189. struct scatterlist *sge;
  190. u32 i = msg->sg.start;
  191. while (bytes) {
  192. sge = sk_msg_elem(msg, i);
  193. if (!sge->length)
  194. break;
  195. if (bytes < sge->length) {
  196. if (charge)
  197. sk_mem_uncharge(sk, bytes);
  198. sge->length -= bytes;
  199. sge->offset += bytes;
  200. msg->sg.size -= bytes;
  201. break;
  202. }
  203. msg->sg.size -= sge->length;
  204. bytes -= sge->length;
  205. sk_msg_free_elem(sk, msg, i, charge);
  206. sk_msg_iter_var_next(i);
  207. sk_msg_check_to_free(msg, i, bytes);
  208. }
  209. msg->sg.start = i;
  210. }
  211. void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
  212. {
  213. __sk_msg_free_partial(sk, msg, bytes, true);
  214. }
  215. EXPORT_SYMBOL_GPL(sk_msg_free_partial);
  216. void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
  217. u32 bytes)
  218. {
  219. __sk_msg_free_partial(sk, msg, bytes, false);
  220. }
  221. void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
  222. {
  223. int trim = msg->sg.size - len;
  224. u32 i = msg->sg.end;
  225. if (trim <= 0) {
  226. WARN_ON(trim < 0);
  227. return;
  228. }
  229. sk_msg_iter_var_prev(i);
  230. msg->sg.size = len;
  231. while (msg->sg.data[i].length &&
  232. trim >= msg->sg.data[i].length) {
  233. trim -= msg->sg.data[i].length;
  234. sk_msg_free_elem(sk, msg, i, true);
  235. sk_msg_iter_var_prev(i);
  236. if (!trim)
  237. goto out;
  238. }
  239. msg->sg.data[i].length -= trim;
  240. sk_mem_uncharge(sk, trim);
  241. /* Adjust copybreak if it falls into the trimmed part of last buf */
  242. if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
  243. msg->sg.copybreak = msg->sg.data[i].length;
  244. out:
  245. sk_msg_iter_var_next(i);
  246. msg->sg.end = i;
  247. /* If we trim data a full sg elem before curr pointer update
  248. * copybreak and current so that any future copy operations
  249. * start at new copy location.
  250. * However trimed data that has not yet been used in a copy op
  251. * does not require an update.
  252. */
  253. if (!msg->sg.size) {
  254. msg->sg.curr = msg->sg.start;
  255. msg->sg.copybreak = 0;
  256. } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
  257. sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
  258. sk_msg_iter_var_prev(i);
  259. msg->sg.curr = i;
  260. msg->sg.copybreak = msg->sg.data[i].length;
  261. }
  262. }
  263. EXPORT_SYMBOL_GPL(sk_msg_trim);
  264. int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
  265. struct sk_msg *msg, u32 bytes)
  266. {
  267. int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
  268. const int to_max_pages = MAX_MSG_FRAGS;
  269. struct page *pages[MAX_MSG_FRAGS];
  270. ssize_t orig, copied, use, offset;
  271. orig = msg->sg.size;
  272. while (bytes > 0) {
  273. i = 0;
  274. maxpages = to_max_pages - num_elems;
  275. if (maxpages == 0) {
  276. ret = -EFAULT;
  277. goto out;
  278. }
  279. copied = iov_iter_get_pages(from, pages, bytes, maxpages,
  280. &offset);
  281. if (copied <= 0) {
  282. ret = -EFAULT;
  283. goto out;
  284. }
  285. iov_iter_advance(from, copied);
  286. bytes -= copied;
  287. msg->sg.size += copied;
  288. while (copied) {
  289. use = min_t(int, copied, PAGE_SIZE - offset);
  290. sg_set_page(&msg->sg.data[msg->sg.end],
  291. pages[i], use, offset);
  292. sg_unmark_end(&msg->sg.data[msg->sg.end]);
  293. sk_mem_charge(sk, use);
  294. offset = 0;
  295. copied -= use;
  296. sk_msg_iter_next(msg, end);
  297. num_elems++;
  298. i++;
  299. }
  300. /* When zerocopy is mixed with sk_msg_*copy* operations we
  301. * may have a copybreak set in this case clear and prefer
  302. * zerocopy remainder when possible.
  303. */
  304. msg->sg.copybreak = 0;
  305. msg->sg.curr = msg->sg.end;
  306. }
  307. out:
  308. /* Revert iov_iter updates, msg will need to use 'trim' later if it
  309. * also needs to be cleared.
  310. */
  311. if (ret)
  312. iov_iter_revert(from, msg->sg.size - orig);
  313. return ret;
  314. }
  315. EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
  316. int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
  317. struct sk_msg *msg, u32 bytes)
  318. {
  319. int ret = -ENOSPC, i = msg->sg.curr;
  320. struct scatterlist *sge;
  321. u32 copy, buf_size;
  322. void *to;
  323. do {
  324. sge = sk_msg_elem(msg, i);
  325. /* This is possible if a trim operation shrunk the buffer */
  326. if (msg->sg.copybreak >= sge->length) {
  327. msg->sg.copybreak = 0;
  328. sk_msg_iter_var_next(i);
  329. if (i == msg->sg.end)
  330. break;
  331. sge = sk_msg_elem(msg, i);
  332. }
  333. buf_size = sge->length - msg->sg.copybreak;
  334. copy = (buf_size > bytes) ? bytes : buf_size;
  335. to = sg_virt(sge) + msg->sg.copybreak;
  336. msg->sg.copybreak += copy;
  337. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  338. ret = copy_from_iter_nocache(to, copy, from);
  339. else
  340. ret = copy_from_iter(to, copy, from);
  341. if (ret != copy) {
  342. ret = -EFAULT;
  343. goto out;
  344. }
  345. bytes -= copy;
  346. if (!bytes)
  347. break;
  348. msg->sg.copybreak = 0;
  349. sk_msg_iter_var_next(i);
  350. } while (i != msg->sg.end);
  351. out:
  352. msg->sg.curr = i;
  353. return ret;
  354. }
  355. EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
  356. /* Receive sk_msg from psock->ingress_msg to @msg. */
  357. int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
  358. int len, int flags)
  359. {
  360. struct iov_iter *iter = &msg->msg_iter;
  361. int peek = flags & MSG_PEEK;
  362. struct sk_msg *msg_rx;
  363. int i, copied = 0;
  364. msg_rx = sk_psock_peek_msg(psock);
  365. while (copied != len) {
  366. struct scatterlist *sge;
  367. if (unlikely(!msg_rx))
  368. break;
  369. i = msg_rx->sg.start;
  370. do {
  371. struct page *page;
  372. int copy;
  373. sge = sk_msg_elem(msg_rx, i);
  374. copy = sge->length;
  375. page = sg_page(sge);
  376. if (copied + copy > len)
  377. copy = len - copied;
  378. copy = copy_page_to_iter(page, sge->offset, copy, iter);
  379. if (!copy)
  380. return copied ? copied : -EFAULT;
  381. copied += copy;
  382. if (likely(!peek)) {
  383. sge->offset += copy;
  384. sge->length -= copy;
  385. if (!msg_rx->skb)
  386. sk_mem_uncharge(sk, copy);
  387. msg_rx->sg.size -= copy;
  388. if (!sge->length) {
  389. sk_msg_iter_var_next(i);
  390. if (!msg_rx->skb)
  391. put_page(page);
  392. }
  393. } else {
  394. /* Lets not optimize peek case if copy_page_to_iter
  395. * didn't copy the entire length lets just break.
  396. */
  397. if (copy != sge->length)
  398. return copied;
  399. sk_msg_iter_var_next(i);
  400. }
  401. if (copied == len)
  402. break;
  403. } while (i != msg_rx->sg.end);
  404. if (unlikely(peek)) {
  405. msg_rx = sk_psock_next_msg(psock, msg_rx);
  406. if (!msg_rx)
  407. break;
  408. continue;
  409. }
  410. msg_rx->sg.start = i;
  411. if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) {
  412. msg_rx = sk_psock_dequeue_msg(psock);
  413. kfree_sk_msg(msg_rx);
  414. }
  415. msg_rx = sk_psock_peek_msg(psock);
  416. }
  417. return copied;
  418. }
  419. EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
  420. bool sk_msg_is_readable(struct sock *sk)
  421. {
  422. struct sk_psock *psock;
  423. bool empty = true;
  424. rcu_read_lock();
  425. psock = sk_psock(sk);
  426. if (likely(psock))
  427. empty = list_empty(&psock->ingress_msg);
  428. rcu_read_unlock();
  429. return !empty;
  430. }
  431. EXPORT_SYMBOL_GPL(sk_msg_is_readable);
  432. static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
  433. struct sk_buff *skb)
  434. {
  435. struct sk_msg *msg;
  436. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  437. return NULL;
  438. if (!sk_rmem_schedule(sk, skb, skb->truesize))
  439. return NULL;
  440. msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
  441. if (unlikely(!msg))
  442. return NULL;
  443. sk_msg_init(msg);
  444. return msg;
  445. }
  446. static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
  447. u32 off, u32 len,
  448. struct sk_psock *psock,
  449. struct sock *sk,
  450. struct sk_msg *msg)
  451. {
  452. int num_sge, copied;
  453. num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
  454. if (num_sge < 0) {
  455. /* skb linearize may fail with ENOMEM, but lets simply try again
  456. * later if this happens. Under memory pressure we don't want to
  457. * drop the skb. We need to linearize the skb so that the mapping
  458. * in skb_to_sgvec can not error.
  459. */
  460. if (skb_linearize(skb))
  461. return -EAGAIN;
  462. num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
  463. if (unlikely(num_sge < 0))
  464. return num_sge;
  465. }
  466. copied = len;
  467. msg->sg.start = 0;
  468. msg->sg.size = copied;
  469. msg->sg.end = num_sge;
  470. msg->skb = skb;
  471. sk_psock_queue_msg(psock, msg);
  472. sk_psock_data_ready(sk, psock);
  473. return copied;
  474. }
  475. static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
  476. u32 off, u32 len);
  477. static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
  478. u32 off, u32 len)
  479. {
  480. struct sock *sk = psock->sk;
  481. struct sk_msg *msg;
  482. int err;
  483. /* If we are receiving on the same sock skb->sk is already assigned,
  484. * skip memory accounting and owner transition seeing it already set
  485. * correctly.
  486. */
  487. if (unlikely(skb->sk == sk))
  488. return sk_psock_skb_ingress_self(psock, skb, off, len);
  489. msg = sk_psock_create_ingress_msg(sk, skb);
  490. if (!msg)
  491. return -EAGAIN;
  492. /* This will transition ownership of the data from the socket where
  493. * the BPF program was run initiating the redirect to the socket
  494. * we will eventually receive this data on. The data will be released
  495. * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
  496. * into user buffers.
  497. */
  498. skb_set_owner_r(skb, sk);
  499. err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
  500. if (err < 0)
  501. kfree(msg);
  502. return err;
  503. }
  504. /* Puts an skb on the ingress queue of the socket already assigned to the
  505. * skb. In this case we do not need to check memory limits or skb_set_owner_r
  506. * because the skb is already accounted for here.
  507. */
  508. static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
  509. u32 off, u32 len)
  510. {
  511. struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
  512. struct sock *sk = psock->sk;
  513. int err;
  514. if (unlikely(!msg))
  515. return -EAGAIN;
  516. sk_msg_init(msg);
  517. skb_set_owner_r(skb, sk);
  518. err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
  519. if (err < 0)
  520. kfree(msg);
  521. return err;
  522. }
  523. static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
  524. u32 off, u32 len, bool ingress)
  525. {
  526. if (!ingress) {
  527. if (!sock_writeable(psock->sk))
  528. return -EAGAIN;
  529. return skb_send_sock(psock->sk, skb, off, len);
  530. }
  531. return sk_psock_skb_ingress(psock, skb, off, len);
  532. }
  533. static void sk_psock_skb_state(struct sk_psock *psock,
  534. struct sk_psock_work_state *state,
  535. struct sk_buff *skb,
  536. int len, int off)
  537. {
  538. spin_lock_bh(&psock->ingress_lock);
  539. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  540. state->skb = skb;
  541. state->len = len;
  542. state->off = off;
  543. } else {
  544. sock_drop(psock->sk, skb);
  545. }
  546. spin_unlock_bh(&psock->ingress_lock);
  547. }
  548. static void sk_psock_backlog(struct work_struct *work)
  549. {
  550. struct sk_psock *psock = container_of(work, struct sk_psock, work);
  551. struct sk_psock_work_state *state = &psock->work_state;
  552. struct sk_buff *skb = NULL;
  553. bool ingress;
  554. u32 len, off;
  555. int ret;
  556. mutex_lock(&psock->work_mutex);
  557. if (unlikely(state->skb)) {
  558. spin_lock_bh(&psock->ingress_lock);
  559. skb = state->skb;
  560. len = state->len;
  561. off = state->off;
  562. state->skb = NULL;
  563. spin_unlock_bh(&psock->ingress_lock);
  564. }
  565. if (skb)
  566. goto start;
  567. while ((skb = skb_dequeue(&psock->ingress_skb))) {
  568. len = skb->len;
  569. off = 0;
  570. if (skb_bpf_strparser(skb)) {
  571. struct strp_msg *stm = strp_msg(skb);
  572. off = stm->offset;
  573. len = stm->full_len;
  574. }
  575. start:
  576. ingress = skb_bpf_ingress(skb);
  577. skb_bpf_redirect_clear(skb);
  578. do {
  579. ret = -EIO;
  580. if (!sock_flag(psock->sk, SOCK_DEAD))
  581. ret = sk_psock_handle_skb(psock, skb, off,
  582. len, ingress);
  583. if (ret <= 0) {
  584. if (ret == -EAGAIN) {
  585. sk_psock_skb_state(psock, state, skb,
  586. len, off);
  587. goto end;
  588. }
  589. /* Hard errors break pipe and stop xmit. */
  590. sk_psock_report_error(psock, ret ? -ret : EPIPE);
  591. sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
  592. sock_drop(psock->sk, skb);
  593. goto end;
  594. }
  595. off += ret;
  596. len -= ret;
  597. } while (len);
  598. if (!ingress)
  599. kfree_skb(skb);
  600. }
  601. end:
  602. mutex_unlock(&psock->work_mutex);
  603. }
  604. struct sk_psock *sk_psock_init(struct sock *sk, int node)
  605. {
  606. struct sk_psock *psock;
  607. struct proto *prot;
  608. write_lock_bh(&sk->sk_callback_lock);
  609. if (sk->sk_user_data) {
  610. psock = ERR_PTR(-EBUSY);
  611. goto out;
  612. }
  613. psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
  614. if (!psock) {
  615. psock = ERR_PTR(-ENOMEM);
  616. goto out;
  617. }
  618. prot = READ_ONCE(sk->sk_prot);
  619. psock->sk = sk;
  620. psock->eval = __SK_NONE;
  621. psock->sk_proto = prot;
  622. psock->saved_unhash = prot->unhash;
  623. psock->saved_close = prot->close;
  624. psock->saved_write_space = sk->sk_write_space;
  625. INIT_LIST_HEAD(&psock->link);
  626. spin_lock_init(&psock->link_lock);
  627. INIT_WORK(&psock->work, sk_psock_backlog);
  628. mutex_init(&psock->work_mutex);
  629. INIT_LIST_HEAD(&psock->ingress_msg);
  630. spin_lock_init(&psock->ingress_lock);
  631. skb_queue_head_init(&psock->ingress_skb);
  632. sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
  633. refcount_set(&psock->refcnt, 1);
  634. rcu_assign_sk_user_data_nocopy(sk, psock);
  635. sock_hold(sk);
  636. out:
  637. write_unlock_bh(&sk->sk_callback_lock);
  638. return psock;
  639. }
  640. EXPORT_SYMBOL_GPL(sk_psock_init);
  641. struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
  642. {
  643. struct sk_psock_link *link;
  644. spin_lock_bh(&psock->link_lock);
  645. link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
  646. list);
  647. if (link)
  648. list_del(&link->list);
  649. spin_unlock_bh(&psock->link_lock);
  650. return link;
  651. }
  652. static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
  653. {
  654. struct sk_msg *msg, *tmp;
  655. list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
  656. list_del(&msg->list);
  657. sk_msg_free(psock->sk, msg);
  658. kfree(msg);
  659. }
  660. }
  661. static void __sk_psock_zap_ingress(struct sk_psock *psock)
  662. {
  663. struct sk_buff *skb;
  664. while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
  665. skb_bpf_redirect_clear(skb);
  666. sock_drop(psock->sk, skb);
  667. }
  668. kfree_skb(psock->work_state.skb);
  669. /* We null the skb here to ensure that calls to sk_psock_backlog
  670. * do not pick up the free'd skb.
  671. */
  672. psock->work_state.skb = NULL;
  673. __sk_psock_purge_ingress_msg(psock);
  674. }
  675. static void sk_psock_link_destroy(struct sk_psock *psock)
  676. {
  677. struct sk_psock_link *link, *tmp;
  678. list_for_each_entry_safe(link, tmp, &psock->link, list) {
  679. list_del(&link->list);
  680. sk_psock_free_link(link);
  681. }
  682. }
  683. void sk_psock_stop(struct sk_psock *psock, bool wait)
  684. {
  685. spin_lock_bh(&psock->ingress_lock);
  686. sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
  687. sk_psock_cork_free(psock);
  688. __sk_psock_zap_ingress(psock);
  689. spin_unlock_bh(&psock->ingress_lock);
  690. if (wait)
  691. cancel_work_sync(&psock->work);
  692. }
  693. static void sk_psock_done_strp(struct sk_psock *psock);
  694. static void sk_psock_destroy(struct work_struct *work)
  695. {
  696. struct sk_psock *psock = container_of(to_rcu_work(work),
  697. struct sk_psock, rwork);
  698. /* No sk_callback_lock since already detached. */
  699. sk_psock_done_strp(psock);
  700. cancel_work_sync(&psock->work);
  701. mutex_destroy(&psock->work_mutex);
  702. psock_progs_drop(&psock->progs);
  703. sk_psock_link_destroy(psock);
  704. sk_psock_cork_free(psock);
  705. if (psock->sk_redir)
  706. sock_put(psock->sk_redir);
  707. sock_put(psock->sk);
  708. kfree(psock);
  709. }
  710. void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
  711. {
  712. write_lock_bh(&sk->sk_callback_lock);
  713. sk_psock_restore_proto(sk, psock);
  714. rcu_assign_sk_user_data(sk, NULL);
  715. if (psock->progs.stream_parser)
  716. sk_psock_stop_strp(sk, psock);
  717. else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
  718. sk_psock_stop_verdict(sk, psock);
  719. write_unlock_bh(&sk->sk_callback_lock);
  720. sk_psock_stop(psock, false);
  721. INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
  722. queue_rcu_work(system_wq, &psock->rwork);
  723. }
  724. EXPORT_SYMBOL_GPL(sk_psock_drop);
  725. static int sk_psock_map_verd(int verdict, bool redir)
  726. {
  727. switch (verdict) {
  728. case SK_PASS:
  729. return redir ? __SK_REDIRECT : __SK_PASS;
  730. case SK_DROP:
  731. default:
  732. break;
  733. }
  734. return __SK_DROP;
  735. }
  736. int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
  737. struct sk_msg *msg)
  738. {
  739. struct bpf_prog *prog;
  740. int ret;
  741. rcu_read_lock();
  742. prog = READ_ONCE(psock->progs.msg_parser);
  743. if (unlikely(!prog)) {
  744. ret = __SK_PASS;
  745. goto out;
  746. }
  747. sk_msg_compute_data_pointers(msg);
  748. msg->sk = sk;
  749. ret = bpf_prog_run_pin_on_cpu(prog, msg);
  750. ret = sk_psock_map_verd(ret, msg->sk_redir);
  751. psock->apply_bytes = msg->apply_bytes;
  752. if (ret == __SK_REDIRECT) {
  753. if (psock->sk_redir)
  754. sock_put(psock->sk_redir);
  755. psock->sk_redir = msg->sk_redir;
  756. if (!psock->sk_redir) {
  757. ret = __SK_DROP;
  758. goto out;
  759. }
  760. sock_hold(psock->sk_redir);
  761. }
  762. out:
  763. rcu_read_unlock();
  764. return ret;
  765. }
  766. EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
  767. static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
  768. {
  769. struct sk_psock *psock_other;
  770. struct sock *sk_other;
  771. sk_other = skb_bpf_redirect_fetch(skb);
  772. /* This error is a buggy BPF program, it returned a redirect
  773. * return code, but then didn't set a redirect interface.
  774. */
  775. if (unlikely(!sk_other)) {
  776. skb_bpf_redirect_clear(skb);
  777. sock_drop(from->sk, skb);
  778. return -EIO;
  779. }
  780. psock_other = sk_psock(sk_other);
  781. /* This error indicates the socket is being torn down or had another
  782. * error that caused the pipe to break. We can't send a packet on
  783. * a socket that is in this state so we drop the skb.
  784. */
  785. if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
  786. skb_bpf_redirect_clear(skb);
  787. sock_drop(from->sk, skb);
  788. return -EIO;
  789. }
  790. spin_lock_bh(&psock_other->ingress_lock);
  791. if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
  792. spin_unlock_bh(&psock_other->ingress_lock);
  793. skb_bpf_redirect_clear(skb);
  794. sock_drop(from->sk, skb);
  795. return -EIO;
  796. }
  797. skb_queue_tail(&psock_other->ingress_skb, skb);
  798. schedule_work(&psock_other->work);
  799. spin_unlock_bh(&psock_other->ingress_lock);
  800. return 0;
  801. }
  802. static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
  803. struct sk_psock *from, int verdict)
  804. {
  805. switch (verdict) {
  806. case __SK_REDIRECT:
  807. sk_psock_skb_redirect(from, skb);
  808. break;
  809. case __SK_PASS:
  810. case __SK_DROP:
  811. default:
  812. break;
  813. }
  814. }
  815. int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
  816. {
  817. struct bpf_prog *prog;
  818. int ret = __SK_PASS;
  819. rcu_read_lock();
  820. prog = READ_ONCE(psock->progs.stream_verdict);
  821. if (likely(prog)) {
  822. skb->sk = psock->sk;
  823. skb_dst_drop(skb);
  824. skb_bpf_redirect_clear(skb);
  825. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  826. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  827. skb->sk = NULL;
  828. }
  829. sk_psock_tls_verdict_apply(skb, psock, ret);
  830. rcu_read_unlock();
  831. return ret;
  832. }
  833. EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
  834. static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
  835. int verdict)
  836. {
  837. struct sock *sk_other;
  838. int err = 0;
  839. u32 len, off;
  840. switch (verdict) {
  841. case __SK_PASS:
  842. err = -EIO;
  843. sk_other = psock->sk;
  844. if (sock_flag(sk_other, SOCK_DEAD) ||
  845. !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  846. skb_bpf_redirect_clear(skb);
  847. goto out_free;
  848. }
  849. skb_bpf_set_ingress(skb);
  850. /* If the queue is empty then we can submit directly
  851. * into the msg queue. If its not empty we have to
  852. * queue work otherwise we may get OOO data. Otherwise,
  853. * if sk_psock_skb_ingress errors will be handled by
  854. * retrying later from workqueue.
  855. */
  856. if (skb_queue_empty(&psock->ingress_skb)) {
  857. len = skb->len;
  858. off = 0;
  859. if (skb_bpf_strparser(skb)) {
  860. struct strp_msg *stm = strp_msg(skb);
  861. off = stm->offset;
  862. len = stm->full_len;
  863. }
  864. err = sk_psock_skb_ingress_self(psock, skb, off, len);
  865. }
  866. if (err < 0) {
  867. spin_lock_bh(&psock->ingress_lock);
  868. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  869. skb_queue_tail(&psock->ingress_skb, skb);
  870. schedule_work(&psock->work);
  871. err = 0;
  872. }
  873. spin_unlock_bh(&psock->ingress_lock);
  874. if (err < 0) {
  875. skb_bpf_redirect_clear(skb);
  876. goto out_free;
  877. }
  878. }
  879. break;
  880. case __SK_REDIRECT:
  881. err = sk_psock_skb_redirect(psock, skb);
  882. break;
  883. case __SK_DROP:
  884. default:
  885. out_free:
  886. sock_drop(psock->sk, skb);
  887. }
  888. return err;
  889. }
  890. static void sk_psock_write_space(struct sock *sk)
  891. {
  892. struct sk_psock *psock;
  893. void (*write_space)(struct sock *sk) = NULL;
  894. rcu_read_lock();
  895. psock = sk_psock(sk);
  896. if (likely(psock)) {
  897. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  898. schedule_work(&psock->work);
  899. write_space = psock->saved_write_space;
  900. }
  901. rcu_read_unlock();
  902. if (write_space)
  903. write_space(sk);
  904. }
  905. #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
  906. static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
  907. {
  908. struct sk_psock *psock;
  909. struct bpf_prog *prog;
  910. int ret = __SK_DROP;
  911. struct sock *sk;
  912. rcu_read_lock();
  913. sk = strp->sk;
  914. psock = sk_psock(sk);
  915. if (unlikely(!psock)) {
  916. sock_drop(sk, skb);
  917. goto out;
  918. }
  919. prog = READ_ONCE(psock->progs.stream_verdict);
  920. if (likely(prog)) {
  921. skb->sk = sk;
  922. skb_dst_drop(skb);
  923. skb_bpf_redirect_clear(skb);
  924. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  925. if (ret == SK_PASS)
  926. skb_bpf_set_strparser(skb);
  927. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  928. skb->sk = NULL;
  929. }
  930. sk_psock_verdict_apply(psock, skb, ret);
  931. out:
  932. rcu_read_unlock();
  933. }
  934. static int sk_psock_strp_read_done(struct strparser *strp, int err)
  935. {
  936. return err;
  937. }
  938. static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
  939. {
  940. struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
  941. struct bpf_prog *prog;
  942. int ret = skb->len;
  943. rcu_read_lock();
  944. prog = READ_ONCE(psock->progs.stream_parser);
  945. if (likely(prog)) {
  946. skb->sk = psock->sk;
  947. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  948. skb->sk = NULL;
  949. }
  950. rcu_read_unlock();
  951. return ret;
  952. }
  953. /* Called with socket lock held. */
  954. static void sk_psock_strp_data_ready(struct sock *sk)
  955. {
  956. struct sk_psock *psock;
  957. rcu_read_lock();
  958. psock = sk_psock(sk);
  959. if (likely(psock)) {
  960. if (tls_sw_has_ctx_rx(sk)) {
  961. psock->saved_data_ready(sk);
  962. } else {
  963. write_lock_bh(&sk->sk_callback_lock);
  964. strp_data_ready(&psock->strp);
  965. write_unlock_bh(&sk->sk_callback_lock);
  966. }
  967. }
  968. rcu_read_unlock();
  969. }
  970. int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
  971. {
  972. static const struct strp_callbacks cb = {
  973. .rcv_msg = sk_psock_strp_read,
  974. .read_sock_done = sk_psock_strp_read_done,
  975. .parse_msg = sk_psock_strp_parse,
  976. };
  977. return strp_init(&psock->strp, sk, &cb);
  978. }
  979. void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
  980. {
  981. if (psock->saved_data_ready)
  982. return;
  983. psock->saved_data_ready = sk->sk_data_ready;
  984. sk->sk_data_ready = sk_psock_strp_data_ready;
  985. sk->sk_write_space = sk_psock_write_space;
  986. }
  987. void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
  988. {
  989. psock_set_prog(&psock->progs.stream_parser, NULL);
  990. if (!psock->saved_data_ready)
  991. return;
  992. sk->sk_data_ready = psock->saved_data_ready;
  993. psock->saved_data_ready = NULL;
  994. strp_stop(&psock->strp);
  995. }
  996. static void sk_psock_done_strp(struct sk_psock *psock)
  997. {
  998. /* Parser has been stopped */
  999. if (psock->progs.stream_parser)
  1000. strp_done(&psock->strp);
  1001. }
  1002. #else
  1003. static void sk_psock_done_strp(struct sk_psock *psock)
  1004. {
  1005. }
  1006. #endif /* CONFIG_BPF_STREAM_PARSER */
  1007. static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
  1008. unsigned int offset, size_t orig_len)
  1009. {
  1010. struct sock *sk = (struct sock *)desc->arg.data;
  1011. struct sk_psock *psock;
  1012. struct bpf_prog *prog;
  1013. int ret = __SK_DROP;
  1014. int len = orig_len;
  1015. /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
  1016. skb = skb_clone(skb, GFP_ATOMIC);
  1017. if (!skb) {
  1018. desc->error = -ENOMEM;
  1019. return 0;
  1020. }
  1021. rcu_read_lock();
  1022. psock = sk_psock(sk);
  1023. if (unlikely(!psock)) {
  1024. len = 0;
  1025. sock_drop(sk, skb);
  1026. goto out;
  1027. }
  1028. prog = READ_ONCE(psock->progs.stream_verdict);
  1029. if (!prog)
  1030. prog = READ_ONCE(psock->progs.skb_verdict);
  1031. if (likely(prog)) {
  1032. skb->sk = sk;
  1033. skb_dst_drop(skb);
  1034. skb_bpf_redirect_clear(skb);
  1035. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  1036. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  1037. skb->sk = NULL;
  1038. }
  1039. if (sk_psock_verdict_apply(psock, skb, ret) < 0)
  1040. len = 0;
  1041. out:
  1042. rcu_read_unlock();
  1043. return len;
  1044. }
  1045. static void sk_psock_verdict_data_ready(struct sock *sk)
  1046. {
  1047. struct socket *sock = sk->sk_socket;
  1048. read_descriptor_t desc;
  1049. if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
  1050. return;
  1051. desc.arg.data = sk;
  1052. desc.error = 0;
  1053. desc.count = 1;
  1054. sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
  1055. }
  1056. void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
  1057. {
  1058. if (psock->saved_data_ready)
  1059. return;
  1060. psock->saved_data_ready = sk->sk_data_ready;
  1061. sk->sk_data_ready = sk_psock_verdict_data_ready;
  1062. sk->sk_write_space = sk_psock_write_space;
  1063. }
  1064. void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
  1065. {
  1066. psock_set_prog(&psock->progs.stream_verdict, NULL);
  1067. psock_set_prog(&psock->progs.skb_verdict, NULL);
  1068. if (!psock->saved_data_ready)
  1069. return;
  1070. sk->sk_data_ready = psock->saved_data_ready;
  1071. psock->saved_data_ready = NULL;
  1072. }