/unsupported/test/cxx11_tensor_argmax_sycl.cpp
https://gitlab.com/mrssss/eigen · C++ · 257 lines · 193 code · 43 blank · 21 comment · 29 complexity · 389d4dde7cefaaa6e14b6fe568176ac1 MD5 · raw file
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2016
- // Mehdi Goli Codeplay Software Ltd.
- // Ralph Potter Codeplay Software Ltd.
- // Luke Iwanski Codeplay Software Ltd.
- // Contact: <eigen@codeplay.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define EIGEN_TEST_NO_LONGDOUBLE
- #define EIGEN_TEST_NO_COMPLEX
- #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
- #define EIGEN_USE_SYCL
- #include "main.h"
- #include <unsupported/Eigen/CXX11/Tensor>
- using Eigen::array;
- using Eigen::SyclDevice;
- using Eigen::Tensor;
- using Eigen::TensorMap;
- template <typename DataType, int Layout, typename DenseIndex>
- static void test_sycl_simple_argmax(const Eigen::SyclDevice& sycl_device) {
- Tensor<DataType, 3, Layout, DenseIndex> in(Eigen::array<DenseIndex, 3>{{2, 2, 2}});
- Tensor<DenseIndex, 0, Layout, DenseIndex> out_max;
- Tensor<DenseIndex, 0, Layout, DenseIndex> out_min;
- in.setRandom();
- in *= in.constant(100.0);
- in(0, 0, 0) = -1000.0;
- in(1, 1, 1) = 1000.0;
- std::size_t in_bytes = in.size() * sizeof(DataType);
- std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
- DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
- DenseIndex* d_out_max = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
- DenseIndex* d_out_min = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, Layout, DenseIndex> > gpu_in(d_in,
- Eigen::array<DenseIndex, 3>{{2, 2, 2}});
- Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_max(d_out_max);
- Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_min(d_out_min);
- sycl_device.memcpyHostToDevice(d_in, in.data(), in_bytes);
- gpu_out_max.device(sycl_device) = gpu_in.argmax();
- gpu_out_min.device(sycl_device) = gpu_in.argmin();
- sycl_device.memcpyDeviceToHost(out_max.data(), d_out_max, out_bytes);
- sycl_device.memcpyDeviceToHost(out_min.data(), d_out_min, out_bytes);
- VERIFY_IS_EQUAL(out_max(), 2 * 2 * 2 - 1);
- VERIFY_IS_EQUAL(out_min(), 0);
- sycl_device.deallocate(d_in);
- sycl_device.deallocate(d_out_max);
- sycl_device.deallocate(d_out_min);
- }
- template <typename DataType, int DataLayout, typename DenseIndex>
- static void test_sycl_argmax_dim(const Eigen::SyclDevice& sycl_device) {
- DenseIndex sizeDim0 = 9;
- DenseIndex sizeDim1 = 3;
- DenseIndex sizeDim2 = 5;
- DenseIndex sizeDim3 = 7;
- Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3);
- std::vector<DenseIndex> dims;
- dims.push_back(sizeDim0);
- dims.push_back(sizeDim1);
- dims.push_back(sizeDim2);
- dims.push_back(sizeDim3);
- for (DenseIndex dim = 0; dim < 4; ++dim) {
- array<DenseIndex, 3> out_shape;
- for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
- Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
- array<DenseIndex, 4> ix;
- for (DenseIndex i = 0; i < sizeDim0; ++i) {
- for (DenseIndex j = 0; j < sizeDim1; ++j) {
- for (DenseIndex k = 0; k < sizeDim2; ++k) {
- for (DenseIndex l = 0; l < sizeDim3; ++l) {
- ix[0] = i;
- ix[1] = j;
- ix[2] = k;
- ix[3] = l;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l)
- // = 10.0
- tensor(ix) = (ix[dim] != 0) ? -1.0 : 10.0;
- }
- }
- }
- }
- std::size_t in_bytes = tensor.size() * sizeof(DataType);
- std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
- DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
- DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
- Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(
- d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}});
- Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
- sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
- gpu_out.device(sycl_device) = gpu_in.argmax(dim);
- sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
- VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
- size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim)));
- for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
- // Expect max to be in the first index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
- }
- sycl_device.synchronize();
- for (DenseIndex i = 0; i < sizeDim0; ++i) {
- for (DenseIndex j = 0; j < sizeDim1; ++j) {
- for (DenseIndex k = 0; k < sizeDim2; ++k) {
- for (DenseIndex l = 0; l < sizeDim3; ++l) {
- ix[0] = i;
- ix[1] = j;
- ix[2] = k;
- ix[3] = l;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
- tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? -1.0 : 20.0;
- }
- }
- }
- }
- sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
- gpu_out.device(sycl_device) = gpu_in.argmax(dim);
- sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
- for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
- // Expect max to be in the last index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
- }
- sycl_device.deallocate(d_in);
- sycl_device.deallocate(d_out);
- }
- }
- template <typename DataType, int DataLayout, typename DenseIndex>
- static void test_sycl_argmin_dim(const Eigen::SyclDevice& sycl_device) {
- DenseIndex sizeDim0 = 9;
- DenseIndex sizeDim1 = 3;
- DenseIndex sizeDim2 = 5;
- DenseIndex sizeDim3 = 7;
- Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3);
- std::vector<DenseIndex> dims;
- dims.push_back(sizeDim0);
- dims.push_back(sizeDim1);
- dims.push_back(sizeDim2);
- dims.push_back(sizeDim3);
- for (DenseIndex dim = 0; dim < 4; ++dim) {
- array<DenseIndex, 3> out_shape;
- for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
- Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
- array<DenseIndex, 4> ix;
- for (DenseIndex i = 0; i < sizeDim0; ++i) {
- for (DenseIndex j = 0; j < sizeDim1; ++j) {
- for (DenseIndex k = 0; k < sizeDim2; ++k) {
- for (DenseIndex l = 0; l < sizeDim3; ++l) {
- ix[0] = i;
- ix[1] = j;
- ix[2] = k;
- ix[3] = l;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
- tensor(ix) = (ix[dim] != 0) ? 1.0 : -10.0;
- }
- }
- }
- }
- std::size_t in_bytes = tensor.size() * sizeof(DataType);
- std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
- DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
- DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
- Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(
- d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}});
- Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
- sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
- gpu_out.device(sycl_device) = gpu_in.argmin(dim);
- sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
- VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
- size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim)));
- for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
- // Expect max to be in the first index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
- }
- sycl_device.synchronize();
- for (DenseIndex i = 0; i < sizeDim0; ++i) {
- for (DenseIndex j = 0; j < sizeDim1; ++j) {
- for (DenseIndex k = 0; k < sizeDim2; ++k) {
- for (DenseIndex l = 0; l < sizeDim3; ++l) {
- ix[0] = i;
- ix[1] = j;
- ix[2] = k;
- ix[3] = l;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
- tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? 1.0 : -20.0;
- }
- }
- }
- }
- sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
- gpu_out.device(sycl_device) = gpu_in.argmin(dim);
- sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
- for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
- // Expect max to be in the last index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
- }
- sycl_device.deallocate(d_in);
- sycl_device.deallocate(d_out);
- }
- }
- template <typename DataType, typename Device_Selector>
- void sycl_argmax_test_per_device(const Device_Selector& d) {
- QueueInterface queueInterface(d);
- auto sycl_device = Eigen::SyclDevice(&queueInterface);
- test_sycl_simple_argmax<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_simple_argmax<DataType, ColMajor, int64_t>(sycl_device);
- test_sycl_argmax_dim<DataType, ColMajor, int64_t>(sycl_device);
- test_sycl_argmax_dim<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_argmin_dim<DataType, ColMajor, int64_t>(sycl_device);
- test_sycl_argmin_dim<DataType, RowMajor, int64_t>(sycl_device);
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_argmax_sycl) {
- for (const auto& device : Eigen::get_sycl_supported_devices()) {
- CALL_SUBTEST(sycl_argmax_test_per_device<float>(device));
- }
- }