PageRenderTime 25ms CodeModel.GetById 23ms RepoModel.GetById 0ms app.codeStats 0ms

/arch/arm64/kernel/setup.c

https://bitbucket.org/mirror/linux
C | 431 lines | 283 code | 67 blank | 81 comment | 32 complexity | a299ce5a8c4d6205d231cd07b8dad3d1 MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Based on arch/arm/kernel/setup.c
  4. *
  5. * Copyright (C) 1995-2001 Russell King
  6. * Copyright (C) 2012 ARM Ltd.
  7. */
  8. #include <linux/acpi.h>
  9. #include <linux/export.h>
  10. #include <linux/kernel.h>
  11. #include <linux/stddef.h>
  12. #include <linux/ioport.h>
  13. #include <linux/delay.h>
  14. #include <linux/initrd.h>
  15. #include <linux/console.h>
  16. #include <linux/cache.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/init.h>
  19. #include <linux/kexec.h>
  20. #include <linux/root_dev.h>
  21. #include <linux/cpu.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/smp.h>
  24. #include <linux/fs.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/memblock.h>
  27. #include <linux/of_fdt.h>
  28. #include <linux/efi.h>
  29. #include <linux/psci.h>
  30. #include <linux/sched/task.h>
  31. #include <linux/mm.h>
  32. #include <asm/acpi.h>
  33. #include <asm/fixmap.h>
  34. #include <asm/cpu.h>
  35. #include <asm/cputype.h>
  36. #include <asm/daifflags.h>
  37. #include <asm/elf.h>
  38. #include <asm/cpufeature.h>
  39. #include <asm/cpu_ops.h>
  40. #include <asm/kasan.h>
  41. #include <asm/numa.h>
  42. #include <asm/sections.h>
  43. #include <asm/setup.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/cacheflush.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/traps.h>
  48. #include <asm/efi.h>
  49. #include <asm/xen/hypervisor.h>
  50. #include <asm/mmu_context.h>
  51. static int num_standard_resources;
  52. static struct resource *standard_resources;
  53. phys_addr_t __fdt_pointer __initdata;
  54. /*
  55. * Standard memory resources
  56. */
  57. static struct resource mem_res[] = {
  58. {
  59. .name = "Kernel code",
  60. .start = 0,
  61. .end = 0,
  62. .flags = IORESOURCE_SYSTEM_RAM
  63. },
  64. {
  65. .name = "Kernel data",
  66. .start = 0,
  67. .end = 0,
  68. .flags = IORESOURCE_SYSTEM_RAM
  69. }
  70. };
  71. #define kernel_code mem_res[0]
  72. #define kernel_data mem_res[1]
  73. /*
  74. * The recorded values of x0 .. x3 upon kernel entry.
  75. */
  76. u64 __cacheline_aligned boot_args[4];
  77. void __init smp_setup_processor_id(void)
  78. {
  79. u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  80. cpu_logical_map(0) = mpidr;
  81. /*
  82. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  83. * using percpu variable early, for example, lockdep will
  84. * access percpu variable inside lock_release
  85. */
  86. set_my_cpu_offset(0);
  87. pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
  88. (unsigned long)mpidr, read_cpuid_id());
  89. }
  90. bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
  91. {
  92. return phys_id == cpu_logical_map(cpu);
  93. }
  94. struct mpidr_hash mpidr_hash;
  95. /**
  96. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  97. * level in order to build a linear index from an
  98. * MPIDR value. Resulting algorithm is a collision
  99. * free hash carried out through shifting and ORing
  100. */
  101. static void __init smp_build_mpidr_hash(void)
  102. {
  103. u32 i, affinity, fs[4], bits[4], ls;
  104. u64 mask = 0;
  105. /*
  106. * Pre-scan the list of MPIDRS and filter out bits that do
  107. * not contribute to affinity levels, ie they never toggle.
  108. */
  109. for_each_possible_cpu(i)
  110. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  111. pr_debug("mask of set bits %#llx\n", mask);
  112. /*
  113. * Find and stash the last and first bit set at all affinity levels to
  114. * check how many bits are required to represent them.
  115. */
  116. for (i = 0; i < 4; i++) {
  117. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  118. /*
  119. * Find the MSB bit and LSB bits position
  120. * to determine how many bits are required
  121. * to express the affinity level.
  122. */
  123. ls = fls(affinity);
  124. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  125. bits[i] = ls - fs[i];
  126. }
  127. /*
  128. * An index can be created from the MPIDR_EL1 by isolating the
  129. * significant bits at each affinity level and by shifting
  130. * them in order to compress the 32 bits values space to a
  131. * compressed set of values. This is equivalent to hashing
  132. * the MPIDR_EL1 through shifting and ORing. It is a collision free
  133. * hash though not minimal since some levels might contain a number
  134. * of CPUs that is not an exact power of 2 and their bit
  135. * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
  136. */
  137. mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
  138. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
  139. mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
  140. (bits[1] + bits[0]);
  141. mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
  142. fs[3] - (bits[2] + bits[1] + bits[0]);
  143. mpidr_hash.mask = mask;
  144. mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
  145. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
  146. mpidr_hash.shift_aff[0],
  147. mpidr_hash.shift_aff[1],
  148. mpidr_hash.shift_aff[2],
  149. mpidr_hash.shift_aff[3],
  150. mpidr_hash.mask,
  151. mpidr_hash.bits);
  152. /*
  153. * 4x is an arbitrary value used to warn on a hash table much bigger
  154. * than expected on most systems.
  155. */
  156. if (mpidr_hash_size() > 4 * num_possible_cpus())
  157. pr_warn("Large number of MPIDR hash buckets detected\n");
  158. }
  159. static void __init setup_machine_fdt(phys_addr_t dt_phys)
  160. {
  161. int size;
  162. void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
  163. const char *name;
  164. if (dt_virt)
  165. memblock_reserve(dt_phys, size);
  166. if (!dt_virt || !early_init_dt_scan(dt_virt)) {
  167. pr_crit("\n"
  168. "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
  169. "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
  170. "\nPlease check your bootloader.",
  171. &dt_phys, dt_virt);
  172. while (true)
  173. cpu_relax();
  174. }
  175. /* Early fixups are done, map the FDT as read-only now */
  176. fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
  177. name = of_flat_dt_get_machine_name();
  178. if (!name)
  179. return;
  180. pr_info("Machine model: %s\n", name);
  181. dump_stack_set_arch_desc("%s (DT)", name);
  182. }
  183. static void __init request_standard_resources(void)
  184. {
  185. struct memblock_region *region;
  186. struct resource *res;
  187. unsigned long i = 0;
  188. size_t res_size;
  189. kernel_code.start = __pa_symbol(_text);
  190. kernel_code.end = __pa_symbol(__init_begin - 1);
  191. kernel_data.start = __pa_symbol(_sdata);
  192. kernel_data.end = __pa_symbol(_end - 1);
  193. num_standard_resources = memblock.memory.cnt;
  194. res_size = num_standard_resources * sizeof(*standard_resources);
  195. standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
  196. if (!standard_resources)
  197. panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
  198. for_each_memblock(memory, region) {
  199. res = &standard_resources[i++];
  200. if (memblock_is_nomap(region)) {
  201. res->name = "reserved";
  202. res->flags = IORESOURCE_MEM;
  203. } else {
  204. res->name = "System RAM";
  205. res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
  206. }
  207. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  208. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  209. request_resource(&iomem_resource, res);
  210. if (kernel_code.start >= res->start &&
  211. kernel_code.end <= res->end)
  212. request_resource(res, &kernel_code);
  213. if (kernel_data.start >= res->start &&
  214. kernel_data.end <= res->end)
  215. request_resource(res, &kernel_data);
  216. #ifdef CONFIG_KEXEC_CORE
  217. /* Userspace will find "Crash kernel" region in /proc/iomem. */
  218. if (crashk_res.end && crashk_res.start >= res->start &&
  219. crashk_res.end <= res->end)
  220. request_resource(res, &crashk_res);
  221. #endif
  222. }
  223. }
  224. static int __init reserve_memblock_reserved_regions(void)
  225. {
  226. u64 i, j;
  227. for (i = 0; i < num_standard_resources; ++i) {
  228. struct resource *mem = &standard_resources[i];
  229. phys_addr_t r_start, r_end, mem_size = resource_size(mem);
  230. if (!memblock_is_region_reserved(mem->start, mem_size))
  231. continue;
  232. for_each_reserved_mem_region(j, &r_start, &r_end) {
  233. resource_size_t start, end;
  234. start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
  235. end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
  236. if (start > mem->end || end < mem->start)
  237. continue;
  238. reserve_region_with_split(mem, start, end, "reserved");
  239. }
  240. }
  241. return 0;
  242. }
  243. arch_initcall(reserve_memblock_reserved_regions);
  244. u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
  245. void __init setup_arch(char **cmdline_p)
  246. {
  247. init_mm.start_code = (unsigned long) _text;
  248. init_mm.end_code = (unsigned long) _etext;
  249. init_mm.end_data = (unsigned long) _edata;
  250. init_mm.brk = (unsigned long) _end;
  251. *cmdline_p = boot_command_line;
  252. /*
  253. * If know now we are going to need KPTI then use non-global
  254. * mappings from the start, avoiding the cost of rewriting
  255. * everything later.
  256. */
  257. arm64_use_ng_mappings = kaslr_requires_kpti();
  258. early_fixmap_init();
  259. early_ioremap_init();
  260. setup_machine_fdt(__fdt_pointer);
  261. /*
  262. * Initialise the static keys early as they may be enabled by the
  263. * cpufeature code and early parameters.
  264. */
  265. jump_label_init();
  266. parse_early_param();
  267. /*
  268. * Unmask asynchronous aborts and fiq after bringing up possible
  269. * earlycon. (Report possible System Errors once we can report this
  270. * occurred).
  271. */
  272. local_daif_restore(DAIF_PROCCTX_NOIRQ);
  273. /*
  274. * TTBR0 is only used for the identity mapping at this stage. Make it
  275. * point to zero page to avoid speculatively fetching new entries.
  276. */
  277. cpu_uninstall_idmap();
  278. xen_early_init();
  279. efi_init();
  280. if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
  281. pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
  282. arm64_memblock_init();
  283. paging_init();
  284. acpi_table_upgrade();
  285. /* Parse the ACPI tables for possible boot-time configuration */
  286. acpi_boot_table_init();
  287. if (acpi_disabled)
  288. unflatten_device_tree();
  289. bootmem_init();
  290. kasan_init();
  291. request_standard_resources();
  292. early_ioremap_reset();
  293. if (acpi_disabled)
  294. psci_dt_init();
  295. else
  296. psci_acpi_init();
  297. init_bootcpu_ops();
  298. smp_init_cpus();
  299. smp_build_mpidr_hash();
  300. /* Init percpu seeds for random tags after cpus are set up. */
  301. kasan_init_tags();
  302. #ifdef CONFIG_ARM64_SW_TTBR0_PAN
  303. /*
  304. * Make sure init_thread_info.ttbr0 always generates translation
  305. * faults in case uaccess_enable() is inadvertently called by the init
  306. * thread.
  307. */
  308. init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page);
  309. #endif
  310. if (boot_args[1] || boot_args[2] || boot_args[3]) {
  311. pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
  312. "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
  313. "This indicates a broken bootloader or old kernel\n",
  314. boot_args[1], boot_args[2], boot_args[3]);
  315. }
  316. }
  317. static inline bool cpu_can_disable(unsigned int cpu)
  318. {
  319. #ifdef CONFIG_HOTPLUG_CPU
  320. const struct cpu_operations *ops = get_cpu_ops(cpu);
  321. if (ops && ops->cpu_can_disable)
  322. return ops->cpu_can_disable(cpu);
  323. #endif
  324. return false;
  325. }
  326. static int __init topology_init(void)
  327. {
  328. int i;
  329. for_each_online_node(i)
  330. register_one_node(i);
  331. for_each_possible_cpu(i) {
  332. struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
  333. cpu->hotpluggable = cpu_can_disable(i);
  334. register_cpu(cpu, i);
  335. }
  336. return 0;
  337. }
  338. subsys_initcall(topology_init);
  339. /*
  340. * Dump out kernel offset information on panic.
  341. */
  342. static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
  343. void *p)
  344. {
  345. const unsigned long offset = kaslr_offset();
  346. if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
  347. pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
  348. offset, KIMAGE_VADDR);
  349. pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
  350. } else {
  351. pr_emerg("Kernel Offset: disabled\n");
  352. }
  353. return 0;
  354. }
  355. static struct notifier_block kernel_offset_notifier = {
  356. .notifier_call = dump_kernel_offset
  357. };
  358. static int __init register_kernel_offset_dumper(void)
  359. {
  360. atomic_notifier_chain_register(&panic_notifier_list,
  361. &kernel_offset_notifier);
  362. return 0;
  363. }
  364. __initcall(register_kernel_offset_dumper);