PageRenderTime 56ms CodeModel.GetById 16ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/media/dvb-frontends/stv0900_core.c

https://bitbucket.org/advance38/linux
C | 1939 lines | 1562 code | 311 blank | 66 comment | 316 complexity | 8b2e22cab98f34fd9568b3d6b91a5bfc MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * stv0900_core.c
  3. *
  4. * Driver for ST STV0900 satellite demodulator IC.
  5. *
  6. * Copyright (C) ST Microelectronics.
  7. * Copyright (C) 2009 NetUP Inc.
  8. * Copyright (C) 2009 Igor M. Liplianin <liplianin@netup.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. *
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/string.h>
  28. #include <linux/slab.h>
  29. #include <linux/i2c.h>
  30. #include "stv0900.h"
  31. #include "stv0900_reg.h"
  32. #include "stv0900_priv.h"
  33. #include "stv0900_init.h"
  34. int stvdebug = 1;
  35. module_param_named(debug, stvdebug, int, 0644);
  36. /* internal params node */
  37. struct stv0900_inode {
  38. /* pointer for internal params, one for each pair of demods */
  39. struct stv0900_internal *internal;
  40. struct stv0900_inode *next_inode;
  41. };
  42. /* first internal params */
  43. static struct stv0900_inode *stv0900_first_inode;
  44. /* find chip by i2c adapter and i2c address */
  45. static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap,
  46. u8 i2c_addr)
  47. {
  48. struct stv0900_inode *temp_chip = stv0900_first_inode;
  49. if (temp_chip != NULL) {
  50. /*
  51. Search of the last stv0900 chip or
  52. find it by i2c adapter and i2c address */
  53. while ((temp_chip != NULL) &&
  54. ((temp_chip->internal->i2c_adap != i2c_adap) ||
  55. (temp_chip->internal->i2c_addr != i2c_addr)))
  56. temp_chip = temp_chip->next_inode;
  57. }
  58. return temp_chip;
  59. }
  60. /* deallocating chip */
  61. static void remove_inode(struct stv0900_internal *internal)
  62. {
  63. struct stv0900_inode *prev_node = stv0900_first_inode;
  64. struct stv0900_inode *del_node = find_inode(internal->i2c_adap,
  65. internal->i2c_addr);
  66. if (del_node != NULL) {
  67. if (del_node == stv0900_first_inode) {
  68. stv0900_first_inode = del_node->next_inode;
  69. } else {
  70. while (prev_node->next_inode != del_node)
  71. prev_node = prev_node->next_inode;
  72. if (del_node->next_inode == NULL)
  73. prev_node->next_inode = NULL;
  74. else
  75. prev_node->next_inode =
  76. prev_node->next_inode->next_inode;
  77. }
  78. kfree(del_node);
  79. }
  80. }
  81. /* allocating new chip */
  82. static struct stv0900_inode *append_internal(struct stv0900_internal *internal)
  83. {
  84. struct stv0900_inode *new_node = stv0900_first_inode;
  85. if (new_node == NULL) {
  86. new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL);
  87. stv0900_first_inode = new_node;
  88. } else {
  89. while (new_node->next_inode != NULL)
  90. new_node = new_node->next_inode;
  91. new_node->next_inode = kmalloc(sizeof(struct stv0900_inode),
  92. GFP_KERNEL);
  93. if (new_node->next_inode != NULL)
  94. new_node = new_node->next_inode;
  95. else
  96. new_node = NULL;
  97. }
  98. if (new_node != NULL) {
  99. new_node->internal = internal;
  100. new_node->next_inode = NULL;
  101. }
  102. return new_node;
  103. }
  104. s32 ge2comp(s32 a, s32 width)
  105. {
  106. if (width == 32)
  107. return a;
  108. else
  109. return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a;
  110. }
  111. void stv0900_write_reg(struct stv0900_internal *intp, u16 reg_addr,
  112. u8 reg_data)
  113. {
  114. u8 data[3];
  115. int ret;
  116. struct i2c_msg i2cmsg = {
  117. .addr = intp->i2c_addr,
  118. .flags = 0,
  119. .len = 3,
  120. .buf = data,
  121. };
  122. data[0] = MSB(reg_addr);
  123. data[1] = LSB(reg_addr);
  124. data[2] = reg_data;
  125. ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1);
  126. if (ret != 1)
  127. dprintk("%s: i2c error %d\n", __func__, ret);
  128. }
  129. u8 stv0900_read_reg(struct stv0900_internal *intp, u16 reg)
  130. {
  131. int ret;
  132. u8 b0[] = { MSB(reg), LSB(reg) };
  133. u8 buf = 0;
  134. struct i2c_msg msg[] = {
  135. {
  136. .addr = intp->i2c_addr,
  137. .flags = 0,
  138. .buf = b0,
  139. .len = 2,
  140. }, {
  141. .addr = intp->i2c_addr,
  142. .flags = I2C_M_RD,
  143. .buf = &buf,
  144. .len = 1,
  145. },
  146. };
  147. ret = i2c_transfer(intp->i2c_adap, msg, 2);
  148. if (ret != 2)
  149. dprintk("%s: i2c error %d, reg[0x%02x]\n",
  150. __func__, ret, reg);
  151. return buf;
  152. }
  153. static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
  154. {
  155. u8 position = 0, i = 0;
  156. (*mask) = label & 0xff;
  157. while ((position == 0) && (i < 8)) {
  158. position = ((*mask) >> i) & 0x01;
  159. i++;
  160. }
  161. (*pos) = (i - 1);
  162. }
  163. void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val)
  164. {
  165. u8 reg, mask, pos;
  166. reg = stv0900_read_reg(intp, (label >> 16) & 0xffff);
  167. extract_mask_pos(label, &mask, &pos);
  168. val = mask & (val << pos);
  169. reg = (reg & (~mask)) | val;
  170. stv0900_write_reg(intp, (label >> 16) & 0xffff, reg);
  171. }
  172. u8 stv0900_get_bits(struct stv0900_internal *intp, u32 label)
  173. {
  174. u8 val = 0xff;
  175. u8 mask, pos;
  176. extract_mask_pos(label, &mask, &pos);
  177. val = stv0900_read_reg(intp, label >> 16);
  178. val = (val & mask) >> pos;
  179. return val;
  180. }
  181. static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp)
  182. {
  183. s32 i;
  184. if (intp == NULL)
  185. return STV0900_INVALID_HANDLE;
  186. intp->chip_id = stv0900_read_reg(intp, R0900_MID);
  187. if (intp->errs != STV0900_NO_ERROR)
  188. return intp->errs;
  189. /*Startup sequence*/
  190. stv0900_write_reg(intp, R0900_P1_DMDISTATE, 0x5c);
  191. stv0900_write_reg(intp, R0900_P2_DMDISTATE, 0x5c);
  192. msleep(3);
  193. stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c);
  194. stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f);
  195. stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20);
  196. stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20);
  197. stv0900_write_reg(intp, R0900_NCOARSE, 0x13);
  198. msleep(3);
  199. stv0900_write_reg(intp, R0900_I2CCFG, 0x08);
  200. switch (intp->clkmode) {
  201. case 0:
  202. case 2:
  203. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20
  204. | intp->clkmode);
  205. break;
  206. default:
  207. /* preserve SELOSCI bit */
  208. i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
  209. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i);
  210. break;
  211. }
  212. msleep(3);
  213. for (i = 0; i < 181; i++)
  214. stv0900_write_reg(intp, STV0900_InitVal[i][0],
  215. STV0900_InitVal[i][1]);
  216. if (stv0900_read_reg(intp, R0900_MID) >= 0x20) {
  217. stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c);
  218. for (i = 0; i < 32; i++)
  219. stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0],
  220. STV0900_Cut20_AddOnVal[i][1]);
  221. }
  222. stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c);
  223. stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c);
  224. stv0900_write_reg(intp, R0900_P1_PDELCTRL2, 0x01);
  225. stv0900_write_reg(intp, R0900_P2_PDELCTRL2, 0x21);
  226. stv0900_write_reg(intp, R0900_P1_PDELCTRL3, 0x20);
  227. stv0900_write_reg(intp, R0900_P2_PDELCTRL3, 0x20);
  228. stv0900_write_reg(intp, R0900_TSTRES0, 0x80);
  229. stv0900_write_reg(intp, R0900_TSTRES0, 0x00);
  230. return STV0900_NO_ERROR;
  231. }
  232. static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk)
  233. {
  234. u32 mclk = 90000000, div = 0, ad_div = 0;
  235. div = stv0900_get_bits(intp, F0900_M_DIV);
  236. ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
  237. mclk = (div + 1) * ext_clk / ad_div;
  238. dprintk("%s: Calculated Mclk = %d\n", __func__, mclk);
  239. return mclk;
  240. }
  241. static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk)
  242. {
  243. u32 m_div, clk_sel;
  244. if (intp == NULL)
  245. return STV0900_INVALID_HANDLE;
  246. if (intp->errs)
  247. return STV0900_I2C_ERROR;
  248. dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk,
  249. intp->quartz);
  250. clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
  251. m_div = ((clk_sel * mclk) / intp->quartz) - 1;
  252. stv0900_write_bits(intp, F0900_M_DIV, m_div);
  253. intp->mclk = stv0900_get_mclk_freq(intp,
  254. intp->quartz);
  255. /*Set the DiseqC frequency to 22KHz */
  256. /*
  257. Formula:
  258. DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg)
  259. DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg)
  260. */
  261. m_div = intp->mclk / 704000;
  262. stv0900_write_reg(intp, R0900_P1_F22TX, m_div);
  263. stv0900_write_reg(intp, R0900_P1_F22RX, m_div);
  264. stv0900_write_reg(intp, R0900_P2_F22TX, m_div);
  265. stv0900_write_reg(intp, R0900_P2_F22RX, m_div);
  266. if ((intp->errs))
  267. return STV0900_I2C_ERROR;
  268. return STV0900_NO_ERROR;
  269. }
  270. static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr,
  271. enum fe_stv0900_demod_num demod)
  272. {
  273. u32 lsb, msb, hsb, err_val;
  274. switch (cntr) {
  275. case 0:
  276. default:
  277. hsb = stv0900_get_bits(intp, ERR_CNT12);
  278. msb = stv0900_get_bits(intp, ERR_CNT11);
  279. lsb = stv0900_get_bits(intp, ERR_CNT10);
  280. break;
  281. case 1:
  282. hsb = stv0900_get_bits(intp, ERR_CNT22);
  283. msb = stv0900_get_bits(intp, ERR_CNT21);
  284. lsb = stv0900_get_bits(intp, ERR_CNT20);
  285. break;
  286. }
  287. err_val = (hsb << 16) + (msb << 8) + (lsb);
  288. return err_val;
  289. }
  290. static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  291. {
  292. struct stv0900_state *state = fe->demodulator_priv;
  293. struct stv0900_internal *intp = state->internal;
  294. enum fe_stv0900_demod_num demod = state->demod;
  295. stv0900_write_bits(intp, I2CT_ON, enable);
  296. return 0;
  297. }
  298. static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp,
  299. enum fe_stv0900_clock_type path1_ts,
  300. enum fe_stv0900_clock_type path2_ts)
  301. {
  302. dprintk("%s\n", __func__);
  303. if (intp->chip_id >= 0x20) {
  304. switch (path1_ts) {
  305. case STV0900_PARALLEL_PUNCT_CLOCK:
  306. case STV0900_DVBCI_CLOCK:
  307. switch (path2_ts) {
  308. case STV0900_SERIAL_PUNCT_CLOCK:
  309. case STV0900_SERIAL_CONT_CLOCK:
  310. default:
  311. stv0900_write_reg(intp, R0900_TSGENERAL,
  312. 0x00);
  313. break;
  314. case STV0900_PARALLEL_PUNCT_CLOCK:
  315. case STV0900_DVBCI_CLOCK:
  316. stv0900_write_reg(intp, R0900_TSGENERAL,
  317. 0x06);
  318. stv0900_write_bits(intp,
  319. F0900_P1_TSFIFO_MANSPEED, 3);
  320. stv0900_write_bits(intp,
  321. F0900_P2_TSFIFO_MANSPEED, 0);
  322. stv0900_write_reg(intp,
  323. R0900_P1_TSSPEED, 0x14);
  324. stv0900_write_reg(intp,
  325. R0900_P2_TSSPEED, 0x28);
  326. break;
  327. }
  328. break;
  329. case STV0900_SERIAL_PUNCT_CLOCK:
  330. case STV0900_SERIAL_CONT_CLOCK:
  331. default:
  332. switch (path2_ts) {
  333. case STV0900_SERIAL_PUNCT_CLOCK:
  334. case STV0900_SERIAL_CONT_CLOCK:
  335. default:
  336. stv0900_write_reg(intp,
  337. R0900_TSGENERAL, 0x0C);
  338. break;
  339. case STV0900_PARALLEL_PUNCT_CLOCK:
  340. case STV0900_DVBCI_CLOCK:
  341. stv0900_write_reg(intp,
  342. R0900_TSGENERAL, 0x0A);
  343. dprintk("%s: 0x0a\n", __func__);
  344. break;
  345. }
  346. break;
  347. }
  348. } else {
  349. switch (path1_ts) {
  350. case STV0900_PARALLEL_PUNCT_CLOCK:
  351. case STV0900_DVBCI_CLOCK:
  352. switch (path2_ts) {
  353. case STV0900_SERIAL_PUNCT_CLOCK:
  354. case STV0900_SERIAL_CONT_CLOCK:
  355. default:
  356. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  357. 0x10);
  358. break;
  359. case STV0900_PARALLEL_PUNCT_CLOCK:
  360. case STV0900_DVBCI_CLOCK:
  361. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  362. 0x16);
  363. stv0900_write_bits(intp,
  364. F0900_P1_TSFIFO_MANSPEED, 3);
  365. stv0900_write_bits(intp,
  366. F0900_P2_TSFIFO_MANSPEED, 0);
  367. stv0900_write_reg(intp, R0900_P1_TSSPEED,
  368. 0x14);
  369. stv0900_write_reg(intp, R0900_P2_TSSPEED,
  370. 0x28);
  371. break;
  372. }
  373. break;
  374. case STV0900_SERIAL_PUNCT_CLOCK:
  375. case STV0900_SERIAL_CONT_CLOCK:
  376. default:
  377. switch (path2_ts) {
  378. case STV0900_SERIAL_PUNCT_CLOCK:
  379. case STV0900_SERIAL_CONT_CLOCK:
  380. default:
  381. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  382. 0x14);
  383. break;
  384. case STV0900_PARALLEL_PUNCT_CLOCK:
  385. case STV0900_DVBCI_CLOCK:
  386. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  387. 0x12);
  388. dprintk("%s: 0x12\n", __func__);
  389. break;
  390. }
  391. break;
  392. }
  393. }
  394. switch (path1_ts) {
  395. case STV0900_PARALLEL_PUNCT_CLOCK:
  396. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
  397. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
  398. break;
  399. case STV0900_DVBCI_CLOCK:
  400. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
  401. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
  402. break;
  403. case STV0900_SERIAL_PUNCT_CLOCK:
  404. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
  405. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
  406. break;
  407. case STV0900_SERIAL_CONT_CLOCK:
  408. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
  409. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
  410. break;
  411. default:
  412. break;
  413. }
  414. switch (path2_ts) {
  415. case STV0900_PARALLEL_PUNCT_CLOCK:
  416. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
  417. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
  418. break;
  419. case STV0900_DVBCI_CLOCK:
  420. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
  421. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
  422. break;
  423. case STV0900_SERIAL_PUNCT_CLOCK:
  424. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
  425. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
  426. break;
  427. case STV0900_SERIAL_CONT_CLOCK:
  428. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
  429. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
  430. break;
  431. default:
  432. break;
  433. }
  434. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
  435. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
  436. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
  437. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
  438. }
  439. void stv0900_set_tuner(struct dvb_frontend *fe, u32 frequency,
  440. u32 bandwidth)
  441. {
  442. struct dvb_frontend_ops *frontend_ops = NULL;
  443. struct dvb_tuner_ops *tuner_ops = NULL;
  444. frontend_ops = &fe->ops;
  445. tuner_ops = &frontend_ops->tuner_ops;
  446. if (tuner_ops->set_frequency) {
  447. if ((tuner_ops->set_frequency(fe, frequency)) < 0)
  448. dprintk("%s: Invalid parameter\n", __func__);
  449. else
  450. dprintk("%s: Frequency=%d\n", __func__, frequency);
  451. }
  452. if (tuner_ops->set_bandwidth) {
  453. if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
  454. dprintk("%s: Invalid parameter\n", __func__);
  455. else
  456. dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
  457. }
  458. }
  459. void stv0900_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
  460. {
  461. struct dvb_frontend_ops *frontend_ops = NULL;
  462. struct dvb_tuner_ops *tuner_ops = NULL;
  463. frontend_ops = &fe->ops;
  464. tuner_ops = &frontend_ops->tuner_ops;
  465. if (tuner_ops->set_bandwidth) {
  466. if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
  467. dprintk("%s: Invalid parameter\n", __func__);
  468. else
  469. dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
  470. }
  471. }
  472. u32 stv0900_get_freq_auto(struct stv0900_internal *intp, int demod)
  473. {
  474. u32 freq, round;
  475. /* Formulat :
  476. Tuner_Frequency(MHz) = Regs / 64
  477. Tuner_granularity(MHz) = Regs / 2048
  478. real_Tuner_Frequency = Tuner_Frequency(MHz) - Tuner_granularity(MHz)
  479. */
  480. freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) +
  481. (stv0900_get_bits(intp, TUN_RFFREQ1) << 2) +
  482. stv0900_get_bits(intp, TUN_RFFREQ0);
  483. freq = (freq * 1000) / 64;
  484. round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) +
  485. stv0900_get_bits(intp, TUN_RFRESTE0);
  486. round = (round * 1000) / 2048;
  487. return freq + round;
  488. }
  489. void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency,
  490. u32 Bandwidth, int demod)
  491. {
  492. u32 tunerFrequency;
  493. /* Formulat:
  494. Tuner_frequency_reg= Frequency(MHz)*64
  495. */
  496. tunerFrequency = (Frequency * 64) / 1000;
  497. stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10));
  498. stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff);
  499. stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03));
  500. /* Low Pass Filter = BW /2 (MHz)*/
  501. stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000);
  502. /* Tuner Write trig */
  503. stv0900_write_reg(intp, TNRLD, 1);
  504. }
  505. static s32 stv0900_get_rf_level(struct stv0900_internal *intp,
  506. const struct stv0900_table *lookup,
  507. enum fe_stv0900_demod_num demod)
  508. {
  509. s32 agc_gain = 0,
  510. imin,
  511. imax,
  512. i,
  513. rf_lvl = 0;
  514. dprintk("%s\n", __func__);
  515. if ((lookup == NULL) || (lookup->size <= 0))
  516. return 0;
  517. agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1),
  518. stv0900_get_bits(intp, AGCIQ_VALUE0));
  519. imin = 0;
  520. imax = lookup->size - 1;
  521. if (INRANGE(lookup->table[imin].regval, agc_gain,
  522. lookup->table[imax].regval)) {
  523. while ((imax - imin) > 1) {
  524. i = (imax + imin) >> 1;
  525. if (INRANGE(lookup->table[imin].regval,
  526. agc_gain,
  527. lookup->table[i].regval))
  528. imax = i;
  529. else
  530. imin = i;
  531. }
  532. rf_lvl = (s32)agc_gain - lookup->table[imin].regval;
  533. rf_lvl *= (lookup->table[imax].realval -
  534. lookup->table[imin].realval);
  535. rf_lvl /= (lookup->table[imax].regval -
  536. lookup->table[imin].regval);
  537. rf_lvl += lookup->table[imin].realval;
  538. } else if (agc_gain > lookup->table[0].regval)
  539. rf_lvl = 5;
  540. else if (agc_gain < lookup->table[lookup->size-1].regval)
  541. rf_lvl = -100;
  542. dprintk("%s: RFLevel = %d\n", __func__, rf_lvl);
  543. return rf_lvl;
  544. }
  545. static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  546. {
  547. struct stv0900_state *state = fe->demodulator_priv;
  548. struct stv0900_internal *internal = state->internal;
  549. s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf,
  550. state->demod);
  551. rflevel = (rflevel + 100) * (65535 / 70);
  552. if (rflevel < 0)
  553. rflevel = 0;
  554. if (rflevel > 65535)
  555. rflevel = 65535;
  556. *strength = rflevel;
  557. return 0;
  558. }
  559. static s32 stv0900_carr_get_quality(struct dvb_frontend *fe,
  560. const struct stv0900_table *lookup)
  561. {
  562. struct stv0900_state *state = fe->demodulator_priv;
  563. struct stv0900_internal *intp = state->internal;
  564. enum fe_stv0900_demod_num demod = state->demod;
  565. s32 c_n = -100,
  566. regval,
  567. imin,
  568. imax,
  569. i,
  570. noise_field1,
  571. noise_field0;
  572. dprintk("%s\n", __func__);
  573. if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
  574. noise_field1 = NOSPLHT_NORMED1;
  575. noise_field0 = NOSPLHT_NORMED0;
  576. } else {
  577. noise_field1 = NOSDATAT_NORMED1;
  578. noise_field0 = NOSDATAT_NORMED0;
  579. }
  580. if (stv0900_get_bits(intp, LOCK_DEFINITIF)) {
  581. if ((lookup != NULL) && lookup->size) {
  582. regval = 0;
  583. msleep(5);
  584. for (i = 0; i < 16; i++) {
  585. regval += MAKEWORD(stv0900_get_bits(intp,
  586. noise_field1),
  587. stv0900_get_bits(intp,
  588. noise_field0));
  589. msleep(1);
  590. }
  591. regval /= 16;
  592. imin = 0;
  593. imax = lookup->size - 1;
  594. if (INRANGE(lookup->table[imin].regval,
  595. regval,
  596. lookup->table[imax].regval)) {
  597. while ((imax - imin) > 1) {
  598. i = (imax + imin) >> 1;
  599. if (INRANGE(lookup->table[imin].regval,
  600. regval,
  601. lookup->table[i].regval))
  602. imax = i;
  603. else
  604. imin = i;
  605. }
  606. c_n = ((regval - lookup->table[imin].regval)
  607. * (lookup->table[imax].realval
  608. - lookup->table[imin].realval)
  609. / (lookup->table[imax].regval
  610. - lookup->table[imin].regval))
  611. + lookup->table[imin].realval;
  612. } else if (regval < lookup->table[imin].regval)
  613. c_n = 1000;
  614. }
  615. }
  616. return c_n;
  617. }
  618. static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
  619. {
  620. struct stv0900_state *state = fe->demodulator_priv;
  621. struct stv0900_internal *intp = state->internal;
  622. enum fe_stv0900_demod_num demod = state->demod;
  623. u8 err_val1, err_val0;
  624. u32 header_err_val = 0;
  625. *ucblocks = 0x0;
  626. if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
  627. /* DVB-S2 delineator errors count */
  628. /* retreiving number for errnous headers */
  629. err_val1 = stv0900_read_reg(intp, BBFCRCKO1);
  630. err_val0 = stv0900_read_reg(intp, BBFCRCKO0);
  631. header_err_val = (err_val1 << 8) | err_val0;
  632. /* retreiving number for errnous packets */
  633. err_val1 = stv0900_read_reg(intp, UPCRCKO1);
  634. err_val0 = stv0900_read_reg(intp, UPCRCKO0);
  635. *ucblocks = (err_val1 << 8) | err_val0;
  636. *ucblocks += header_err_val;
  637. }
  638. return 0;
  639. }
  640. static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr)
  641. {
  642. s32 snrlcl = stv0900_carr_get_quality(fe,
  643. (const struct stv0900_table *)&stv0900_s2_cn);
  644. snrlcl = (snrlcl + 30) * 384;
  645. if (snrlcl < 0)
  646. snrlcl = 0;
  647. if (snrlcl > 65535)
  648. snrlcl = 65535;
  649. *snr = snrlcl;
  650. return 0;
  651. }
  652. static u32 stv0900_get_ber(struct stv0900_internal *intp,
  653. enum fe_stv0900_demod_num demod)
  654. {
  655. u32 ber = 10000000, i;
  656. s32 demod_state;
  657. demod_state = stv0900_get_bits(intp, HEADER_MODE);
  658. switch (demod_state) {
  659. case STV0900_SEARCH:
  660. case STV0900_PLH_DETECTED:
  661. default:
  662. ber = 10000000;
  663. break;
  664. case STV0900_DVBS_FOUND:
  665. ber = 0;
  666. for (i = 0; i < 5; i++) {
  667. msleep(5);
  668. ber += stv0900_get_err_count(intp, 0, demod);
  669. }
  670. ber /= 5;
  671. if (stv0900_get_bits(intp, PRFVIT)) {
  672. ber *= 9766;
  673. ber = ber >> 13;
  674. }
  675. break;
  676. case STV0900_DVBS2_FOUND:
  677. ber = 0;
  678. for (i = 0; i < 5; i++) {
  679. msleep(5);
  680. ber += stv0900_get_err_count(intp, 0, demod);
  681. }
  682. ber /= 5;
  683. if (stv0900_get_bits(intp, PKTDELIN_LOCK)) {
  684. ber *= 9766;
  685. ber = ber >> 13;
  686. }
  687. break;
  688. }
  689. return ber;
  690. }
  691. static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber)
  692. {
  693. struct stv0900_state *state = fe->demodulator_priv;
  694. struct stv0900_internal *internal = state->internal;
  695. *ber = stv0900_get_ber(internal, state->demod);
  696. return 0;
  697. }
  698. int stv0900_get_demod_lock(struct stv0900_internal *intp,
  699. enum fe_stv0900_demod_num demod, s32 time_out)
  700. {
  701. s32 timer = 0,
  702. lock = 0;
  703. enum fe_stv0900_search_state dmd_state;
  704. while ((timer < time_out) && (lock == 0)) {
  705. dmd_state = stv0900_get_bits(intp, HEADER_MODE);
  706. dprintk("Demod State = %d\n", dmd_state);
  707. switch (dmd_state) {
  708. case STV0900_SEARCH:
  709. case STV0900_PLH_DETECTED:
  710. default:
  711. lock = 0;
  712. break;
  713. case STV0900_DVBS2_FOUND:
  714. case STV0900_DVBS_FOUND:
  715. lock = stv0900_get_bits(intp, LOCK_DEFINITIF);
  716. break;
  717. }
  718. if (lock == 0)
  719. msleep(10);
  720. timer += 10;
  721. }
  722. if (lock)
  723. dprintk("DEMOD LOCK OK\n");
  724. else
  725. dprintk("DEMOD LOCK FAIL\n");
  726. return lock;
  727. }
  728. void stv0900_stop_all_s2_modcod(struct stv0900_internal *intp,
  729. enum fe_stv0900_demod_num demod)
  730. {
  731. s32 regflist,
  732. i;
  733. dprintk("%s\n", __func__);
  734. regflist = MODCODLST0;
  735. for (i = 0; i < 16; i++)
  736. stv0900_write_reg(intp, regflist + i, 0xff);
  737. }
  738. void stv0900_activate_s2_modcod(struct stv0900_internal *intp,
  739. enum fe_stv0900_demod_num demod)
  740. {
  741. u32 matype,
  742. mod_code,
  743. fmod,
  744. reg_index,
  745. field_index;
  746. dprintk("%s\n", __func__);
  747. if (intp->chip_id <= 0x11) {
  748. msleep(5);
  749. mod_code = stv0900_read_reg(intp, PLHMODCOD);
  750. matype = mod_code & 0x3;
  751. mod_code = (mod_code & 0x7f) >> 2;
  752. reg_index = MODCODLSTF - mod_code / 2;
  753. field_index = mod_code % 2;
  754. switch (matype) {
  755. case 0:
  756. default:
  757. fmod = 14;
  758. break;
  759. case 1:
  760. fmod = 13;
  761. break;
  762. case 2:
  763. fmod = 11;
  764. break;
  765. case 3:
  766. fmod = 7;
  767. break;
  768. }
  769. if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910))
  770. && (matype <= 1)) {
  771. if (field_index == 0)
  772. stv0900_write_reg(intp, reg_index,
  773. 0xf0 | fmod);
  774. else
  775. stv0900_write_reg(intp, reg_index,
  776. (fmod << 4) | 0xf);
  777. }
  778. } else if (intp->chip_id >= 0x12) {
  779. for (reg_index = 0; reg_index < 7; reg_index++)
  780. stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff);
  781. stv0900_write_reg(intp, MODCODLSTE, 0xff);
  782. stv0900_write_reg(intp, MODCODLSTF, 0xcf);
  783. for (reg_index = 0; reg_index < 8; reg_index++)
  784. stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc);
  785. }
  786. }
  787. void stv0900_activate_s2_modcod_single(struct stv0900_internal *intp,
  788. enum fe_stv0900_demod_num demod)
  789. {
  790. u32 reg_index;
  791. dprintk("%s\n", __func__);
  792. stv0900_write_reg(intp, MODCODLST0, 0xff);
  793. stv0900_write_reg(intp, MODCODLST1, 0xf0);
  794. stv0900_write_reg(intp, MODCODLSTF, 0x0f);
  795. for (reg_index = 0; reg_index < 13; reg_index++)
  796. stv0900_write_reg(intp, MODCODLST2 + reg_index, 0);
  797. }
  798. static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe)
  799. {
  800. return DVBFE_ALGO_CUSTOM;
  801. }
  802. void stv0900_start_search(struct stv0900_internal *intp,
  803. enum fe_stv0900_demod_num demod)
  804. {
  805. u32 freq;
  806. s16 freq_s16 ;
  807. stv0900_write_bits(intp, DEMOD_MODE, 0x1f);
  808. if (intp->chip_id == 0x10)
  809. stv0900_write_reg(intp, CORRELEXP, 0xaa);
  810. if (intp->chip_id < 0x20)
  811. stv0900_write_reg(intp, CARHDR, 0x55);
  812. if (intp->chip_id <= 0x20) {
  813. if (intp->symbol_rate[0] <= 5000000) {
  814. stv0900_write_reg(intp, CARCFG, 0x44);
  815. stv0900_write_reg(intp, CFRUP1, 0x0f);
  816. stv0900_write_reg(intp, CFRUP0, 0xff);
  817. stv0900_write_reg(intp, CFRLOW1, 0xf0);
  818. stv0900_write_reg(intp, CFRLOW0, 0x00);
  819. stv0900_write_reg(intp, RTCS2, 0x68);
  820. } else {
  821. stv0900_write_reg(intp, CARCFG, 0xc4);
  822. stv0900_write_reg(intp, RTCS2, 0x44);
  823. }
  824. } else { /*cut 3.0 above*/
  825. if (intp->symbol_rate[demod] <= 5000000)
  826. stv0900_write_reg(intp, RTCS2, 0x68);
  827. else
  828. stv0900_write_reg(intp, RTCS2, 0x44);
  829. stv0900_write_reg(intp, CARCFG, 0x46);
  830. if (intp->srch_algo[demod] == STV0900_WARM_START) {
  831. freq = 1000 << 16;
  832. freq /= (intp->mclk / 1000);
  833. freq_s16 = (s16)freq;
  834. } else {
  835. freq = (intp->srch_range[demod] / 2000);
  836. if (intp->symbol_rate[demod] <= 5000000)
  837. freq += 80;
  838. else
  839. freq += 600;
  840. freq = freq << 16;
  841. freq /= (intp->mclk / 1000);
  842. freq_s16 = (s16)freq;
  843. }
  844. stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16));
  845. stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16));
  846. freq_s16 *= (-1);
  847. stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16));
  848. stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16));
  849. }
  850. stv0900_write_reg(intp, CFRINIT1, 0);
  851. stv0900_write_reg(intp, CFRINIT0, 0);
  852. if (intp->chip_id >= 0x20) {
  853. stv0900_write_reg(intp, EQUALCFG, 0x41);
  854. stv0900_write_reg(intp, FFECFG, 0x41);
  855. if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) ||
  856. (intp->srch_standard[demod] == STV0900_SEARCH_DSS) ||
  857. (intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) {
  858. stv0900_write_reg(intp, VITSCALE,
  859. 0x82);
  860. stv0900_write_reg(intp, VAVSRVIT, 0x0);
  861. }
  862. }
  863. stv0900_write_reg(intp, SFRSTEP, 0x00);
  864. stv0900_write_reg(intp, TMGTHRISE, 0xe0);
  865. stv0900_write_reg(intp, TMGTHFALL, 0xc0);
  866. stv0900_write_bits(intp, SCAN_ENABLE, 0);
  867. stv0900_write_bits(intp, CFR_AUTOSCAN, 0);
  868. stv0900_write_bits(intp, S1S2_SEQUENTIAL, 0);
  869. stv0900_write_reg(intp, RTC, 0x88);
  870. if (intp->chip_id >= 0x20) {
  871. if (intp->symbol_rate[demod] < 2000000) {
  872. if (intp->chip_id <= 0x20)
  873. stv0900_write_reg(intp, CARFREQ, 0x39);
  874. else /*cut 3.0*/
  875. stv0900_write_reg(intp, CARFREQ, 0x89);
  876. stv0900_write_reg(intp, CARHDR, 0x40);
  877. } else if (intp->symbol_rate[demod] < 10000000) {
  878. stv0900_write_reg(intp, CARFREQ, 0x4c);
  879. stv0900_write_reg(intp, CARHDR, 0x20);
  880. } else {
  881. stv0900_write_reg(intp, CARFREQ, 0x4b);
  882. stv0900_write_reg(intp, CARHDR, 0x20);
  883. }
  884. } else {
  885. if (intp->symbol_rate[demod] < 10000000)
  886. stv0900_write_reg(intp, CARFREQ, 0xef);
  887. else
  888. stv0900_write_reg(intp, CARFREQ, 0xed);
  889. }
  890. switch (intp->srch_algo[demod]) {
  891. case STV0900_WARM_START:
  892. stv0900_write_reg(intp, DMDISTATE, 0x1f);
  893. stv0900_write_reg(intp, DMDISTATE, 0x18);
  894. break;
  895. case STV0900_COLD_START:
  896. stv0900_write_reg(intp, DMDISTATE, 0x1f);
  897. stv0900_write_reg(intp, DMDISTATE, 0x15);
  898. break;
  899. default:
  900. break;
  901. }
  902. }
  903. u8 stv0900_get_optim_carr_loop(s32 srate, enum fe_stv0900_modcode modcode,
  904. s32 pilot, u8 chip_id)
  905. {
  906. u8 aclc_value = 0x29;
  907. s32 i;
  908. const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2;
  909. dprintk("%s\n", __func__);
  910. if (chip_id <= 0x12) {
  911. cls2 = FE_STV0900_S2CarLoop;
  912. cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
  913. cllas2 = FE_STV0900_S2APSKCarLoopCut30;
  914. } else if (chip_id == 0x20) {
  915. cls2 = FE_STV0900_S2CarLoopCut20;
  916. cllqs2 = FE_STV0900_S2LowQPCarLoopCut20;
  917. cllas2 = FE_STV0900_S2APSKCarLoopCut20;
  918. } else {
  919. cls2 = FE_STV0900_S2CarLoopCut30;
  920. cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
  921. cllas2 = FE_STV0900_S2APSKCarLoopCut30;
  922. }
  923. if (modcode < STV0900_QPSK_12) {
  924. i = 0;
  925. while ((i < 3) && (modcode != cllqs2[i].modcode))
  926. i++;
  927. if (i >= 3)
  928. i = 2;
  929. } else {
  930. i = 0;
  931. while ((i < 14) && (modcode != cls2[i].modcode))
  932. i++;
  933. if (i >= 14) {
  934. i = 0;
  935. while ((i < 11) && (modcode != cllas2[i].modcode))
  936. i++;
  937. if (i >= 11)
  938. i = 10;
  939. }
  940. }
  941. if (modcode <= STV0900_QPSK_25) {
  942. if (pilot) {
  943. if (srate <= 3000000)
  944. aclc_value = cllqs2[i].car_loop_pilots_on_2;
  945. else if (srate <= 7000000)
  946. aclc_value = cllqs2[i].car_loop_pilots_on_5;
  947. else if (srate <= 15000000)
  948. aclc_value = cllqs2[i].car_loop_pilots_on_10;
  949. else if (srate <= 25000000)
  950. aclc_value = cllqs2[i].car_loop_pilots_on_20;
  951. else
  952. aclc_value = cllqs2[i].car_loop_pilots_on_30;
  953. } else {
  954. if (srate <= 3000000)
  955. aclc_value = cllqs2[i].car_loop_pilots_off_2;
  956. else if (srate <= 7000000)
  957. aclc_value = cllqs2[i].car_loop_pilots_off_5;
  958. else if (srate <= 15000000)
  959. aclc_value = cllqs2[i].car_loop_pilots_off_10;
  960. else if (srate <= 25000000)
  961. aclc_value = cllqs2[i].car_loop_pilots_off_20;
  962. else
  963. aclc_value = cllqs2[i].car_loop_pilots_off_30;
  964. }
  965. } else if (modcode <= STV0900_8PSK_910) {
  966. if (pilot) {
  967. if (srate <= 3000000)
  968. aclc_value = cls2[i].car_loop_pilots_on_2;
  969. else if (srate <= 7000000)
  970. aclc_value = cls2[i].car_loop_pilots_on_5;
  971. else if (srate <= 15000000)
  972. aclc_value = cls2[i].car_loop_pilots_on_10;
  973. else if (srate <= 25000000)
  974. aclc_value = cls2[i].car_loop_pilots_on_20;
  975. else
  976. aclc_value = cls2[i].car_loop_pilots_on_30;
  977. } else {
  978. if (srate <= 3000000)
  979. aclc_value = cls2[i].car_loop_pilots_off_2;
  980. else if (srate <= 7000000)
  981. aclc_value = cls2[i].car_loop_pilots_off_5;
  982. else if (srate <= 15000000)
  983. aclc_value = cls2[i].car_loop_pilots_off_10;
  984. else if (srate <= 25000000)
  985. aclc_value = cls2[i].car_loop_pilots_off_20;
  986. else
  987. aclc_value = cls2[i].car_loop_pilots_off_30;
  988. }
  989. } else {
  990. if (srate <= 3000000)
  991. aclc_value = cllas2[i].car_loop_pilots_on_2;
  992. else if (srate <= 7000000)
  993. aclc_value = cllas2[i].car_loop_pilots_on_5;
  994. else if (srate <= 15000000)
  995. aclc_value = cllas2[i].car_loop_pilots_on_10;
  996. else if (srate <= 25000000)
  997. aclc_value = cllas2[i].car_loop_pilots_on_20;
  998. else
  999. aclc_value = cllas2[i].car_loop_pilots_on_30;
  1000. }
  1001. return aclc_value;
  1002. }
  1003. u8 stv0900_get_optim_short_carr_loop(s32 srate,
  1004. enum fe_stv0900_modulation modulation,
  1005. u8 chip_id)
  1006. {
  1007. const struct stv0900_short_frames_car_loop_optim *s2scl;
  1008. const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30;
  1009. s32 mod_index = 0;
  1010. u8 aclc_value = 0x0b;
  1011. dprintk("%s\n", __func__);
  1012. s2scl = FE_STV0900_S2ShortCarLoop;
  1013. s2sclc30 = FE_STV0900_S2ShortCarLoopCut30;
  1014. switch (modulation) {
  1015. case STV0900_QPSK:
  1016. default:
  1017. mod_index = 0;
  1018. break;
  1019. case STV0900_8PSK:
  1020. mod_index = 1;
  1021. break;
  1022. case STV0900_16APSK:
  1023. mod_index = 2;
  1024. break;
  1025. case STV0900_32APSK:
  1026. mod_index = 3;
  1027. break;
  1028. }
  1029. if (chip_id >= 0x30) {
  1030. if (srate <= 3000000)
  1031. aclc_value = s2sclc30[mod_index].car_loop_2;
  1032. else if (srate <= 7000000)
  1033. aclc_value = s2sclc30[mod_index].car_loop_5;
  1034. else if (srate <= 15000000)
  1035. aclc_value = s2sclc30[mod_index].car_loop_10;
  1036. else if (srate <= 25000000)
  1037. aclc_value = s2sclc30[mod_index].car_loop_20;
  1038. else
  1039. aclc_value = s2sclc30[mod_index].car_loop_30;
  1040. } else if (chip_id >= 0x20) {
  1041. if (srate <= 3000000)
  1042. aclc_value = s2scl[mod_index].car_loop_cut20_2;
  1043. else if (srate <= 7000000)
  1044. aclc_value = s2scl[mod_index].car_loop_cut20_5;
  1045. else if (srate <= 15000000)
  1046. aclc_value = s2scl[mod_index].car_loop_cut20_10;
  1047. else if (srate <= 25000000)
  1048. aclc_value = s2scl[mod_index].car_loop_cut20_20;
  1049. else
  1050. aclc_value = s2scl[mod_index].car_loop_cut20_30;
  1051. } else {
  1052. if (srate <= 3000000)
  1053. aclc_value = s2scl[mod_index].car_loop_cut12_2;
  1054. else if (srate <= 7000000)
  1055. aclc_value = s2scl[mod_index].car_loop_cut12_5;
  1056. else if (srate <= 15000000)
  1057. aclc_value = s2scl[mod_index].car_loop_cut12_10;
  1058. else if (srate <= 25000000)
  1059. aclc_value = s2scl[mod_index].car_loop_cut12_20;
  1060. else
  1061. aclc_value = s2scl[mod_index].car_loop_cut12_30;
  1062. }
  1063. return aclc_value;
  1064. }
  1065. static
  1066. enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp,
  1067. enum fe_stv0900_demod_mode LDPC_Mode,
  1068. enum fe_stv0900_demod_num demod)
  1069. {
  1070. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1071. s32 reg_ind;
  1072. dprintk("%s\n", __func__);
  1073. switch (LDPC_Mode) {
  1074. case STV0900_DUAL:
  1075. default:
  1076. if ((intp->demod_mode != STV0900_DUAL)
  1077. || (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) {
  1078. stv0900_write_reg(intp, R0900_GENCFG, 0x1d);
  1079. intp->demod_mode = STV0900_DUAL;
  1080. stv0900_write_bits(intp, F0900_FRESFEC, 1);
  1081. stv0900_write_bits(intp, F0900_FRESFEC, 0);
  1082. for (reg_ind = 0; reg_ind < 7; reg_ind++)
  1083. stv0900_write_reg(intp,
  1084. R0900_P1_MODCODLST0 + reg_ind,
  1085. 0xff);
  1086. for (reg_ind = 0; reg_ind < 8; reg_ind++)
  1087. stv0900_write_reg(intp,
  1088. R0900_P1_MODCODLST7 + reg_ind,
  1089. 0xcc);
  1090. stv0900_write_reg(intp, R0900_P1_MODCODLSTE, 0xff);
  1091. stv0900_write_reg(intp, R0900_P1_MODCODLSTF, 0xcf);
  1092. for (reg_ind = 0; reg_ind < 7; reg_ind++)
  1093. stv0900_write_reg(intp,
  1094. R0900_P2_MODCODLST0 + reg_ind,
  1095. 0xff);
  1096. for (reg_ind = 0; reg_ind < 8; reg_ind++)
  1097. stv0900_write_reg(intp,
  1098. R0900_P2_MODCODLST7 + reg_ind,
  1099. 0xcc);
  1100. stv0900_write_reg(intp, R0900_P2_MODCODLSTE, 0xff);
  1101. stv0900_write_reg(intp, R0900_P2_MODCODLSTF, 0xcf);
  1102. }
  1103. break;
  1104. case STV0900_SINGLE:
  1105. if (demod == STV0900_DEMOD_2) {
  1106. stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_1);
  1107. stv0900_activate_s2_modcod_single(intp,
  1108. STV0900_DEMOD_2);
  1109. stv0900_write_reg(intp, R0900_GENCFG, 0x06);
  1110. } else {
  1111. stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_2);
  1112. stv0900_activate_s2_modcod_single(intp,
  1113. STV0900_DEMOD_1);
  1114. stv0900_write_reg(intp, R0900_GENCFG, 0x04);
  1115. }
  1116. intp->demod_mode = STV0900_SINGLE;
  1117. stv0900_write_bits(intp, F0900_FRESFEC, 1);
  1118. stv0900_write_bits(intp, F0900_FRESFEC, 0);
  1119. stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 1);
  1120. stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 0);
  1121. stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 1);
  1122. stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 0);
  1123. break;
  1124. }
  1125. return error;
  1126. }
  1127. static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe,
  1128. struct stv0900_init_params *p_init)
  1129. {
  1130. struct stv0900_state *state = fe->demodulator_priv;
  1131. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1132. enum fe_stv0900_error demodError = STV0900_NO_ERROR;
  1133. struct stv0900_internal *intp = NULL;
  1134. int selosci, i;
  1135. struct stv0900_inode *temp_int = find_inode(state->i2c_adap,
  1136. state->config->demod_address);
  1137. dprintk("%s\n", __func__);
  1138. if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) {
  1139. state->internal = temp_int->internal;
  1140. (state->internal->dmds_used)++;
  1141. dprintk("%s: Find Internal Structure!\n", __func__);
  1142. return STV0900_NO_ERROR;
  1143. } else {
  1144. state->internal = kmalloc(sizeof(struct stv0900_internal),
  1145. GFP_KERNEL);
  1146. if (state->internal == NULL)
  1147. return STV0900_INVALID_HANDLE;
  1148. temp_int = append_internal(state->internal);
  1149. if (temp_int == NULL) {
  1150. kfree(state->internal);
  1151. state->internal = NULL;
  1152. return STV0900_INVALID_HANDLE;
  1153. }
  1154. state->internal->dmds_used = 1;
  1155. state->internal->i2c_adap = state->i2c_adap;
  1156. state->internal->i2c_addr = state->config->demod_address;
  1157. state->internal->clkmode = state->config->clkmode;
  1158. state->internal->errs = STV0900_NO_ERROR;
  1159. dprintk("%s: Create New Internal Structure!\n", __func__);
  1160. }
  1161. if (state->internal == NULL) {
  1162. error = STV0900_INVALID_HANDLE;
  1163. return error;
  1164. }
  1165. demodError = stv0900_initialize(state->internal);
  1166. if (demodError == STV0900_NO_ERROR) {
  1167. error = STV0900_NO_ERROR;
  1168. } else {
  1169. if (demodError == STV0900_INVALID_HANDLE)
  1170. error = STV0900_INVALID_HANDLE;
  1171. else
  1172. error = STV0900_I2C_ERROR;
  1173. return error;
  1174. }
  1175. intp = state->internal;
  1176. intp->demod_mode = p_init->demod_mode;
  1177. stv0900_st_dvbs2_single(intp, intp->demod_mode, STV0900_DEMOD_1);
  1178. intp->chip_id = stv0900_read_reg(intp, R0900_MID);
  1179. intp->rolloff = p_init->rolloff;
  1180. intp->quartz = p_init->dmd_ref_clk;
  1181. stv0900_write_bits(intp, F0900_P1_ROLLOFF_CONTROL, p_init->rolloff);
  1182. stv0900_write_bits(intp, F0900_P2_ROLLOFF_CONTROL, p_init->rolloff);
  1183. intp->ts_config = p_init->ts_config;
  1184. if (intp->ts_config == NULL)
  1185. stv0900_set_ts_parallel_serial(intp,
  1186. p_init->path1_ts_clock,
  1187. p_init->path2_ts_clock);
  1188. else {
  1189. for (i = 0; intp->ts_config[i].addr != 0xffff; i++)
  1190. stv0900_write_reg(intp,
  1191. intp->ts_config[i].addr,
  1192. intp->ts_config[i].val);
  1193. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
  1194. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
  1195. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
  1196. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
  1197. }
  1198. intp->tuner_type[0] = p_init->tuner1_type;
  1199. intp->tuner_type[1] = p_init->tuner2_type;
  1200. /* tuner init */
  1201. switch (p_init->tuner1_type) {
  1202. case 3: /*FE_AUTO_STB6100:*/
  1203. stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c);
  1204. stv0900_write_reg(intp, R0900_P1_TNRCFG2, 0x86);
  1205. stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18);
  1206. stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */
  1207. stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05);
  1208. stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17);
  1209. stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f);
  1210. stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0);
  1211. stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 3);
  1212. break;
  1213. /* case FE_SW_TUNER: */
  1214. default:
  1215. stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 6);
  1216. break;
  1217. }
  1218. stv0900_write_bits(intp, F0900_P1_TUN_MADDRESS, p_init->tun1_maddress);
  1219. switch (p_init->tuner1_adc) {
  1220. case 1:
  1221. stv0900_write_reg(intp, R0900_TSTTNR1, 0x26);
  1222. break;
  1223. default:
  1224. break;
  1225. }
  1226. stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */
  1227. /* tuner init */
  1228. switch (p_init->tuner2_type) {
  1229. case 3: /*FE_AUTO_STB6100:*/
  1230. stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c);
  1231. stv0900_write_reg(intp, R0900_P2_TNRCFG2, 0x86);
  1232. stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18);
  1233. stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */
  1234. stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05);
  1235. stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17);
  1236. stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f);
  1237. stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0);
  1238. stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 3);
  1239. break;
  1240. /* case FE_SW_TUNER: */
  1241. default:
  1242. stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 6);
  1243. break;
  1244. }
  1245. stv0900_write_bits(intp, F0900_P2_TUN_MADDRESS, p_init->tun2_maddress);
  1246. switch (p_init->tuner2_adc) {
  1247. case 1:
  1248. stv0900_write_reg(intp, R0900_TSTTNR3, 0x26);
  1249. break;
  1250. default:
  1251. break;
  1252. }
  1253. stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */
  1254. stv0900_write_bits(intp, F0900_P1_TUN_IQSWAP, p_init->tun1_iq_inv);
  1255. stv0900_write_bits(intp, F0900_P2_TUN_IQSWAP, p_init->tun2_iq_inv);
  1256. stv0900_set_mclk(intp, 135000000);
  1257. msleep(3);
  1258. switch (intp->clkmode) {
  1259. case 0:
  1260. case 2:
  1261. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode);
  1262. break;
  1263. default:
  1264. selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
  1265. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci);
  1266. break;
  1267. }
  1268. msleep(3);
  1269. intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz);
  1270. if (intp->errs)
  1271. error = STV0900_I2C_ERROR;
  1272. return error;
  1273. }
  1274. static int stv0900_status(struct stv0900_internal *intp,
  1275. enum fe_stv0900_demod_num demod)
  1276. {
  1277. enum fe_stv0900_search_state demod_state;
  1278. int locked = FALSE;
  1279. u8 tsbitrate0_val, tsbitrate1_val;
  1280. s32 bitrate;
  1281. demod_state = stv0900_get_bits(intp, HEADER_MODE);
  1282. switch (demod_state) {
  1283. case STV0900_SEARCH:
  1284. case STV0900_PLH_DETECTED:
  1285. default:
  1286. locked = FALSE;
  1287. break;
  1288. case STV0900_DVBS2_FOUND:
  1289. locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
  1290. stv0900_get_bits(intp, PKTDELIN_LOCK) &&
  1291. stv0900_get_bits(intp, TSFIFO_LINEOK);
  1292. break;
  1293. case STV0900_DVBS_FOUND:
  1294. locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
  1295. stv0900_get_bits(intp, LOCKEDVIT) &&
  1296. stv0900_get_bits(intp, TSFIFO_LINEOK);
  1297. break;
  1298. }
  1299. dprintk("%s: locked = %d\n", __func__, locked);
  1300. if (stvdebug) {
  1301. /* Print TS bitrate */
  1302. tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0);
  1303. tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1);
  1304. /* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */
  1305. bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000)
  1306. * (tsbitrate1_val << 8 | tsbitrate0_val);
  1307. bitrate /= 16384;
  1308. dprintk("TS bitrate = %d Mbit/sec\n", bitrate);
  1309. }
  1310. return locked;
  1311. }
  1312. static int stv0900_set_mis(struct stv0900_internal *intp,
  1313. enum fe_stv0900_demod_num demod, int mis)
  1314. {
  1315. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1316. dprintk("%s\n", __func__);
  1317. if (mis < 0 || mis > 255) {
  1318. dprintk("Disable MIS filtering\n");
  1319. stv0900_write_bits(intp, FILTER_EN, 0);
  1320. } else {
  1321. dprintk("Enable MIS filtering - %d\n", mis);
  1322. stv0900_write_bits(intp, FILTER_EN, 1);
  1323. stv0900_write_reg(intp, ISIENTRY, mis);
  1324. stv0900_write_reg(intp, ISIBITENA, 0xff);
  1325. }
  1326. return error;
  1327. }
  1328. static enum dvbfe_search stv0900_search(struct dvb_frontend *fe)
  1329. {
  1330. struct stv0900_state *state = fe->demodulator_priv;
  1331. struct stv0900_internal *intp = state->internal;
  1332. enum fe_stv0900_demod_num demod = state->demod;
  1333. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  1334. struct stv0900_search_params p_search;
  1335. struct stv0900_signal_info p_result = intp->result[demod];
  1336. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1337. dprintk("%s: ", __func__);
  1338. if (!(INRANGE(100000, c->symbol_rate, 70000000)))
  1339. return DVBFE_ALGO_SEARCH_FAILED;
  1340. if (state->config->set_ts_params)
  1341. state->config->set_ts_params(fe, 0);
  1342. stv0900_set_mis(intp, demod, c->stream_id);
  1343. p_result.locked = FALSE;
  1344. p_search.path = demod;
  1345. p_search.frequency = c->frequency;
  1346. p_search.symbol_rate = c->symbol_rate;
  1347. p_search.search_range = 10000000;
  1348. p_search.fec = STV0900_FEC_UNKNOWN;
  1349. p_search.standard = STV0900_AUTO_SEARCH;
  1350. p_search.iq_inversion = STV0900_IQ_AUTO;
  1351. p_search.search_algo = STV0900_BLIND_SEARCH;
  1352. /* Speeds up DVB-S searching */
  1353. if (c->delivery_system == SYS_DVBS)
  1354. p_search.standard = STV0900_SEARCH_DVBS1;
  1355. intp->srch_standard[demod] = p_search.standard;
  1356. intp->symbol_rate[demod] = p_search.symbol_rate;
  1357. intp->srch_range[demod] = p_search.search_range;
  1358. intp->freq[demod] = p_search.frequency;
  1359. intp->srch_algo[demod] = p_search.search_algo;
  1360. intp->srch_iq_inv[demod] = p_search.iq_inversion;
  1361. intp->fec[demod] = p_search.fec;
  1362. if ((stv0900_algo(fe) == STV0900_RANGEOK) &&
  1363. (intp->errs == STV0900_NO_ERROR)) {
  1364. p_result.locked = intp->result[demod].locked;
  1365. p_result.standard = intp->result[demod].standard;
  1366. p_result.frequency = intp->result[demod].frequency;
  1367. p_result.symbol_rate = intp->result[demod].symbol_rate;
  1368. p_result.fec = intp->result[demod].fec;
  1369. p_result.modcode = intp->result[demod].modcode;
  1370. p_result.pilot = intp->result[demod].pilot;
  1371. p_result.frame_len = intp->result[demod].frame_len;
  1372. p_result.spectrum = intp->result[demod].spectrum;
  1373. p_result.rolloff = intp->result[demod].rolloff;
  1374. p_result.modulation = intp->result[demod].modulation;
  1375. } else {
  1376. p_result.locked = FALSE;
  1377. switch (intp->err[demod]) {
  1378. case STV0900_I2C_ERROR:
  1379. error = STV0900_I2C_ERROR;
  1380. break;
  1381. case STV0900_NO_ERROR:
  1382. default:
  1383. error = STV0900_SEARCH_FAILED;
  1384. break;
  1385. }
  1386. }
  1387. if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) {
  1388. dprintk("Search Success\n");
  1389. return DVBFE_ALGO_SEARCH_SUCCESS;
  1390. } else {
  1391. dprintk("Search Fail\n");
  1392. return DVBFE_ALGO_SEARCH_FAILED;
  1393. }
  1394. }
  1395. static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status)
  1396. {
  1397. struct stv0900_state *state = fe->demodulator_priv;
  1398. dprintk("%s: ", __func__);
  1399. if ((stv0900_status(state->internal, state->demod)) == TRUE) {
  1400. dprintk("DEMOD LOCK OK\n");
  1401. *status = FE_HAS_CARRIER
  1402. | FE_HAS_VITERBI
  1403. | FE_HAS_SYNC
  1404. | FE_HAS_LOCK;
  1405. if (state->config->set_lock_led)
  1406. state->config->set_lock_led(fe, 1);
  1407. } else {
  1408. *status = 0;
  1409. if (state->config->set_lock_led)
  1410. state->config->set_lock_led(fe, 0);
  1411. dprintk("DEMOD LOCK FAIL\n");
  1412. }
  1413. return 0;
  1414. }
  1415. static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts)
  1416. {
  1417. struct stv0900_state *state = fe->demodulator_priv;
  1418. struct stv0900_internal *intp = state->internal;
  1419. enum fe_stv0900_demod_num demod = state->demod;
  1420. if (stop_ts == TRUE)
  1421. stv0900_write_bits(intp, RST_HWARE, 1);
  1422. else
  1423. stv0900_write_bits(intp, RST_HWARE, 0);
  1424. return 0;
  1425. }
  1426. static int stv0900_diseqc_init(struct dvb_frontend *fe)
  1427. {
  1428. struct stv0900_state *state = fe->demodulator_priv;
  1429. struct stv0900_internal *intp = state->internal;
  1430. enum fe_stv0900_demod_num demod = state->demod;
  1431. stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode);
  1432. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1433. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1434. return 0;
  1435. }
  1436. static int stv0900_init(struct dvb_frontend *fe)
  1437. {
  1438. dprintk("%s\n", __func__);
  1439. stv0900_stop_ts(fe, 1);
  1440. stv0900_diseqc_init(fe);
  1441. return 0;
  1442. }
  1443. static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data,
  1444. u32 NbData, enum fe_stv0900_demod_num demod)
  1445. {
  1446. s32 i = 0;
  1447. stv0900_write_bits(intp, DIS_PRECHARGE, 1);
  1448. while (i < NbData) {
  1449. while (stv0900_get_bits(intp, FIFO_FULL))
  1450. ;/* checkpatch complains */
  1451. stv0900_write_reg(intp, DISTXDATA, data[i]);
  1452. i++;
  1453. }
  1454. stv0900_write_bits(intp, DIS_PRECHARGE, 0);
  1455. i = 0;
  1456. while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) {
  1457. msleep(10);
  1458. i++;
  1459. }
  1460. return 0;
  1461. }
  1462. static int stv0900_send_master_cmd(struct dvb_frontend *fe,
  1463. struct dvb_diseqc_master_cmd *cmd)
  1464. {
  1465. struct stv0900_state *state = fe->demodulator_priv;
  1466. return stv0900_diseqc_send(state->internal,
  1467. cmd->msg,
  1468. cmd->msg_len,
  1469. state->demod);
  1470. }
  1471. static int stv0900_send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
  1472. {
  1473. struct stv0900_state *state = fe->demodulator_priv;
  1474. struct stv0900_internal *intp = state->internal;
  1475. enum fe_stv0900_demod_num demod = state->demod;
  1476. u8 data;
  1477. switch (burst) {
  1478. case SEC_MINI_A:
  1479. stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */
  1480. data = 0x00;
  1481. stv0900_diseqc_send(intp, &data, 1, state->demod);
  1482. break;
  1483. case SEC_MINI_B:
  1484. stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */
  1485. data = 0xff;
  1486. stv0900_diseqc_send(intp, &data, 1, state->demod);
  1487. break;
  1488. }
  1489. return 0;
  1490. }
  1491. static int stv0900_recv_slave_reply(struct dvb_frontend *fe,
  1492. struct dvb_diseqc_slave_reply *reply)
  1493. {
  1494. struct stv0900_state *state = fe->demodulator_priv;
  1495. struct stv0900_internal *intp = state->internal;
  1496. enum fe_stv0900_demod_num demod = state->demod;
  1497. s32 i = 0;
  1498. reply->msg_len = 0;
  1499. while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) {
  1500. msleep(10);
  1501. i++;
  1502. }
  1503. if (stv0900_get_bits(intp, RX_END)) {
  1504. reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR);
  1505. for (i = 0; i < reply->msg_len; i++)
  1506. reply->msg[i] = stv0900_read_reg(intp, DISRXDATA);
  1507. }
  1508. return 0;
  1509. }
  1510. static int stv0900_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t toneoff)
  1511. {
  1512. struct stv0900_state *state = fe->demodulator_priv;
  1513. struct stv0900_internal *intp = state->internal;
  1514. enum fe_stv0900_demod_num demod = state->demod;
  1515. dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off"));
  1516. switch (toneoff) {
  1517. case SEC_TONE_ON:
  1518. /*Set the DiseqC mode to 22Khz _continues_ tone*/
  1519. stv0900_write_bits(intp, DISTX_MODE, 0);
  1520. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1521. /*release DiseqC reset to enable the 22KHz tone*/
  1522. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1523. break;
  1524. case SEC_TONE_OFF:
  1525. /*return diseqc mode to config->diseqc_mode.
  1526. Usually it's without _continues_ tone */
  1527. stv0900_write_bits(intp, DISTX_MODE,
  1528. state->config->diseqc_mode);
  1529. /*maintain the DiseqC reset to disable the 22KHz tone*/
  1530. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1531. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1532. break;
  1533. default:
  1534. return -EINVAL;
  1535. }
  1536. return 0;
  1537. }
  1538. static void stv0900_release(struct dvb_frontend *fe)
  1539. {
  1540. struct stv0900_state *state = fe->demodulator_priv;
  1541. dprintk("%s\n", __func__);
  1542. if (state->config->set_lock_led)
  1543. state->config->set_lock_led(fe, 0);
  1544. if ((--(state->internal->dmds_used)) <= 0) {
  1545. dprintk("%s: Actually removing\n", __func__);
  1546. remove_inode(state->internal);
  1547. kfree(state->internal);
  1548. }
  1549. kfree(state);
  1550. }
  1551. static int stv0900_sleep(struct dvb_frontend *fe)
  1552. {
  1553. struct stv0900_state *state = fe->demodulator_priv;
  1554. dprintk("%s\n", __func__);
  1555. if (state->config->set_lock_led)
  1556. state->config->set_lock_led(fe, 0);
  1557. return 0;
  1558. }
  1559. static int stv0900_get_frontend(struct dvb_frontend *fe)
  1560. {
  1561. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  1562. struct stv0900_state *state = fe->demodulator_priv;
  1563. struct stv0900_internal *intp = state->internal;
  1564. enum fe_stv0900_demod_num demod = state->demod;
  1565. struct stv0900_signal_info p_result = intp->result[demod];
  1566. p->frequency = p_result.locked ? p_result.frequency : 0;
  1567. p->symbol_rate = p_result.locked ? p_result.symbol_rate : 0;
  1568. return 0;
  1569. }
  1570. static struct dvb_frontend_ops stv0900_ops = {
  1571. .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
  1572. .info = {
  1573. .name = "STV0900 frontend",
  1574. .frequency_min = 950000,
  1575. .frequency_max = 2150000,
  1576. .frequency_stepsize = 125,
  1577. .frequency_tolerance = 0,
  1578. .symbol_rate_min = 1000000,
  1579. .symbol_rate_max = 45000000,
  1580. .symbol_rate_tolerance = 500,
  1581. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  1582. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
  1583. FE_CAN_FEC_7_8 | FE_CAN_QPSK |
  1584. FE_CAN_2G_MODULATION |
  1585. FE_CAN_FEC_AUTO
  1586. },
  1587. .release = stv0900_release,
  1588. .init = stv0900_init,
  1589. .get_frontend = stv0900_get_frontend,
  1590. .sleep = stv0900_sleep,
  1591. .get_frontend_algo = stv0900_frontend_algo,
  1592. .i2c_gate_ctrl = stv0900_i2c_gate_ctrl,
  1593. .diseqc_send_master_cmd = stv0900_send_master_cmd,
  1594. .diseqc_send_burst = stv0900_send_burst,
  1595. .diseqc_recv_slave_reply = stv0900_recv_slave_reply,
  1596. .set_tone = stv0900_set_tone,
  1597. .search = stv0900_search,
  1598. .read_status = stv0900_read_status,
  1599. .read_ber = stv0900_read_ber,
  1600. .read_signal_strength = stv0900_read_signal_strength,
  1601. .read_snr = stv0900_read_snr,
  1602. .read_ucblocks = stv0900_read_ucblocks,
  1603. };
  1604. struct dvb_frontend *stv0900_attach(const struct stv0900_config *config,
  1605. struct i2c_adapter *i2c,
  1606. int demod)
  1607. {
  1608. struct stv0900_state *state = NULL;
  1609. struct stv0900_init_params init_params;
  1610. enum fe_stv0900_error err_stv0900;
  1611. state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL);
  1612. if (state == NULL)
  1613. goto error;
  1614. state->demod = demod;
  1615. state->config = config;
  1616. state->i2c_adap = i2c;
  1617. memcpy(&state->frontend.ops, &stv0900_ops,
  1618. sizeof(struct dvb_frontend_ops));
  1619. state->frontend.demodulator_priv = state;
  1620. switch (demod) {
  1621. case 0:
  1622. case 1:
  1623. init_params.dmd_ref_clk = config->xtal;
  1624. init_params.demod_mode = config->demod_mode;
  1625. init_params.rolloff = STV0900_35;
  1626. init_params.path1_ts_clock = config->path1_mode;
  1627. init_params.tun1_maddress = config->tun1_maddress;
  1628. init_params.tun