PageRenderTime 45ms CodeModel.GetById 13ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/net/wireless/ath/ath9k/eeprom.c

https://bitbucket.org/advance38/linux
C | 586 lines | 491 code | 75 blank | 20 comment | 114 complexity | 27315b1681d4bc5b5bd2ac105181b309 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
  18. {
  19. REG_WRITE(ah, reg, val);
  20. if (ah->config.analog_shiftreg)
  21. udelay(100);
  22. }
  23. void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
  24. u32 shift, u32 val)
  25. {
  26. u32 regVal;
  27. regVal = REG_READ(ah, reg) & ~mask;
  28. regVal |= (val << shift) & mask;
  29. REG_WRITE(ah, reg, regVal);
  30. if (ah->config.analog_shiftreg)
  31. udelay(100);
  32. }
  33. int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
  34. int16_t targetLeft, int16_t targetRight)
  35. {
  36. int16_t rv;
  37. if (srcRight == srcLeft) {
  38. rv = targetLeft;
  39. } else {
  40. rv = (int16_t) (((target - srcLeft) * targetRight +
  41. (srcRight - target) * targetLeft) /
  42. (srcRight - srcLeft));
  43. }
  44. return rv;
  45. }
  46. bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
  47. u16 *indexL, u16 *indexR)
  48. {
  49. u16 i;
  50. if (target <= pList[0]) {
  51. *indexL = *indexR = 0;
  52. return true;
  53. }
  54. if (target >= pList[listSize - 1]) {
  55. *indexL = *indexR = (u16) (listSize - 1);
  56. return true;
  57. }
  58. for (i = 0; i < listSize - 1; i++) {
  59. if (pList[i] == target) {
  60. *indexL = *indexR = i;
  61. return true;
  62. }
  63. if (target < pList[i + 1]) {
  64. *indexL = i;
  65. *indexR = (u16) (i + 1);
  66. return false;
  67. }
  68. }
  69. return false;
  70. }
  71. void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
  72. int eep_start_loc, int size)
  73. {
  74. int i = 0, j, addr;
  75. u32 addrdata[8];
  76. u32 data[8];
  77. for (addr = 0; addr < size; addr++) {
  78. addrdata[i] = AR5416_EEPROM_OFFSET +
  79. ((addr + eep_start_loc) << AR5416_EEPROM_S);
  80. i++;
  81. if (i == 8) {
  82. REG_READ_MULTI(ah, addrdata, data, i);
  83. for (j = 0; j < i; j++) {
  84. *eep_data = data[j];
  85. eep_data++;
  86. }
  87. i = 0;
  88. }
  89. }
  90. if (i != 0) {
  91. REG_READ_MULTI(ah, addrdata, data, i);
  92. for (j = 0; j < i; j++) {
  93. *eep_data = data[j];
  94. eep_data++;
  95. }
  96. }
  97. }
  98. static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
  99. u16 *data)
  100. {
  101. u16 *blob_data;
  102. if (off * sizeof(u16) > ah->eeprom_blob->size)
  103. return false;
  104. blob_data = (u16 *)ah->eeprom_blob->data;
  105. *data = blob_data[off];
  106. return true;
  107. }
  108. bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
  109. {
  110. struct ath_common *common = ath9k_hw_common(ah);
  111. bool ret;
  112. if (ah->eeprom_blob)
  113. ret = ath9k_hw_nvram_read_blob(ah, off, data);
  114. else
  115. ret = common->bus_ops->eeprom_read(common, off, data);
  116. if (!ret)
  117. ath_dbg(common, EEPROM,
  118. "unable to read eeprom region at offset %u\n", off);
  119. return ret;
  120. }
  121. void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
  122. u8 *pVpdList, u16 numIntercepts,
  123. u8 *pRetVpdList)
  124. {
  125. u16 i, k;
  126. u8 currPwr = pwrMin;
  127. u16 idxL = 0, idxR = 0;
  128. for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
  129. ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
  130. numIntercepts, &(idxL),
  131. &(idxR));
  132. if (idxR < 1)
  133. idxR = 1;
  134. if (idxL == numIntercepts - 1)
  135. idxL = (u16) (numIntercepts - 2);
  136. if (pPwrList[idxL] == pPwrList[idxR])
  137. k = pVpdList[idxL];
  138. else
  139. k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
  140. (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
  141. (pPwrList[idxR] - pPwrList[idxL]));
  142. pRetVpdList[i] = (u8) k;
  143. currPwr += 2;
  144. }
  145. }
  146. void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
  147. struct ath9k_channel *chan,
  148. struct cal_target_power_leg *powInfo,
  149. u16 numChannels,
  150. struct cal_target_power_leg *pNewPower,
  151. u16 numRates, bool isExtTarget)
  152. {
  153. struct chan_centers centers;
  154. u16 clo, chi;
  155. int i;
  156. int matchIndex = -1, lowIndex = -1;
  157. u16 freq;
  158. ath9k_hw_get_channel_centers(ah, chan, &centers);
  159. freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
  160. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
  161. IS_CHAN_2GHZ(chan))) {
  162. matchIndex = 0;
  163. } else {
  164. for (i = 0; (i < numChannels) &&
  165. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  166. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  167. IS_CHAN_2GHZ(chan))) {
  168. matchIndex = i;
  169. break;
  170. } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  171. IS_CHAN_2GHZ(chan)) && i > 0 &&
  172. freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  173. IS_CHAN_2GHZ(chan))) {
  174. lowIndex = i - 1;
  175. break;
  176. }
  177. }
  178. if ((matchIndex == -1) && (lowIndex == -1))
  179. matchIndex = i - 1;
  180. }
  181. if (matchIndex != -1) {
  182. *pNewPower = powInfo[matchIndex];
  183. } else {
  184. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  185. IS_CHAN_2GHZ(chan));
  186. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  187. IS_CHAN_2GHZ(chan));
  188. for (i = 0; i < numRates; i++) {
  189. pNewPower->tPow2x[i] =
  190. (u8)ath9k_hw_interpolate(freq, clo, chi,
  191. powInfo[lowIndex].tPow2x[i],
  192. powInfo[lowIndex + 1].tPow2x[i]);
  193. }
  194. }
  195. }
  196. void ath9k_hw_get_target_powers(struct ath_hw *ah,
  197. struct ath9k_channel *chan,
  198. struct cal_target_power_ht *powInfo,
  199. u16 numChannels,
  200. struct cal_target_power_ht *pNewPower,
  201. u16 numRates, bool isHt40Target)
  202. {
  203. struct chan_centers centers;
  204. u16 clo, chi;
  205. int i;
  206. int matchIndex = -1, lowIndex = -1;
  207. u16 freq;
  208. ath9k_hw_get_channel_centers(ah, chan, &centers);
  209. freq = isHt40Target ? centers.synth_center : centers.ctl_center;
  210. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
  211. matchIndex = 0;
  212. } else {
  213. for (i = 0; (i < numChannels) &&
  214. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  215. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  216. IS_CHAN_2GHZ(chan))) {
  217. matchIndex = i;
  218. break;
  219. } else
  220. if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  221. IS_CHAN_2GHZ(chan)) && i > 0 &&
  222. freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  223. IS_CHAN_2GHZ(chan))) {
  224. lowIndex = i - 1;
  225. break;
  226. }
  227. }
  228. if ((matchIndex == -1) && (lowIndex == -1))
  229. matchIndex = i - 1;
  230. }
  231. if (matchIndex != -1) {
  232. *pNewPower = powInfo[matchIndex];
  233. } else {
  234. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  235. IS_CHAN_2GHZ(chan));
  236. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  237. IS_CHAN_2GHZ(chan));
  238. for (i = 0; i < numRates; i++) {
  239. pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
  240. clo, chi,
  241. powInfo[lowIndex].tPow2x[i],
  242. powInfo[lowIndex + 1].tPow2x[i]);
  243. }
  244. }
  245. }
  246. u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
  247. bool is2GHz, int num_band_edges)
  248. {
  249. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  250. int i;
  251. for (i = 0; (i < num_band_edges) &&
  252. (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  253. if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
  254. twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
  255. break;
  256. } else if ((i > 0) &&
  257. (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
  258. is2GHz))) {
  259. if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
  260. is2GHz) < freq &&
  261. CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
  262. twiceMaxEdgePower =
  263. CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
  264. }
  265. break;
  266. }
  267. }
  268. return twiceMaxEdgePower;
  269. }
  270. u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
  271. u8 antenna_reduction)
  272. {
  273. u16 reduction = antenna_reduction;
  274. /*
  275. * Reduce scaled Power by number of chains active
  276. * to get the per chain tx power level.
  277. */
  278. switch (ar5416_get_ntxchains(ah->txchainmask)) {
  279. case 1:
  280. break;
  281. case 2:
  282. reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
  283. break;
  284. case 3:
  285. reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
  286. break;
  287. }
  288. if (power_limit > reduction)
  289. power_limit -= reduction;
  290. else
  291. power_limit = 0;
  292. return power_limit;
  293. }
  294. void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
  295. {
  296. struct ath_common *common = ath9k_hw_common(ah);
  297. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  298. switch (ar5416_get_ntxchains(ah->txchainmask)) {
  299. case 1:
  300. break;
  301. case 2:
  302. regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
  303. break;
  304. case 3:
  305. regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
  306. break;
  307. default:
  308. ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
  309. break;
  310. }
  311. }
  312. void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
  313. struct ath9k_channel *chan,
  314. void *pRawDataSet,
  315. u8 *bChans, u16 availPiers,
  316. u16 tPdGainOverlap,
  317. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  318. u16 numXpdGains)
  319. {
  320. int i, j, k;
  321. int16_t ss;
  322. u16 idxL = 0, idxR = 0, numPiers;
  323. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  324. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  325. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  326. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  327. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  328. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  329. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  330. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  331. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  332. int16_t vpdStep;
  333. int16_t tmpVal;
  334. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  335. bool match;
  336. int16_t minDelta = 0;
  337. struct chan_centers centers;
  338. int pdgain_boundary_default;
  339. struct cal_data_per_freq *data_def = pRawDataSet;
  340. struct cal_data_per_freq_4k *data_4k = pRawDataSet;
  341. struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
  342. bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
  343. int intercepts;
  344. if (AR_SREV_9287(ah))
  345. intercepts = AR9287_PD_GAIN_ICEPTS;
  346. else
  347. intercepts = AR5416_PD_GAIN_ICEPTS;
  348. memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
  349. ath9k_hw_get_channel_centers(ah, chan, &centers);
  350. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  351. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  352. break;
  353. }
  354. match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
  355. IS_CHAN_2GHZ(chan)),
  356. bChans, numPiers, &idxL, &idxR);
  357. if (match) {
  358. if (AR_SREV_9287(ah)) {
  359. /* FIXME: array overrun? */
  360. for (i = 0; i < numXpdGains; i++) {
  361. minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
  362. maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
  363. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  364. data_9287[idxL].pwrPdg[i],
  365. data_9287[idxL].vpdPdg[i],
  366. intercepts,
  367. vpdTableI[i]);
  368. }
  369. } else if (eeprom_4k) {
  370. for (i = 0; i < numXpdGains; i++) {
  371. minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
  372. maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
  373. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  374. data_4k[idxL].pwrPdg[i],
  375. data_4k[idxL].vpdPdg[i],
  376. intercepts,
  377. vpdTableI[i]);
  378. }
  379. } else {
  380. for (i = 0; i < numXpdGains; i++) {
  381. minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
  382. maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
  383. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  384. data_def[idxL].pwrPdg[i],
  385. data_def[idxL].vpdPdg[i],
  386. intercepts,
  387. vpdTableI[i]);
  388. }
  389. }
  390. } else {
  391. for (i = 0; i < numXpdGains; i++) {
  392. if (AR_SREV_9287(ah)) {
  393. pVpdL = data_9287[idxL].vpdPdg[i];
  394. pPwrL = data_9287[idxL].pwrPdg[i];
  395. pVpdR = data_9287[idxR].vpdPdg[i];
  396. pPwrR = data_9287[idxR].pwrPdg[i];
  397. } else if (eeprom_4k) {
  398. pVpdL = data_4k[idxL].vpdPdg[i];
  399. pPwrL = data_4k[idxL].pwrPdg[i];
  400. pVpdR = data_4k[idxR].vpdPdg[i];
  401. pPwrR = data_4k[idxR].pwrPdg[i];
  402. } else {
  403. pVpdL = data_def[idxL].vpdPdg[i];
  404. pPwrL = data_def[idxL].pwrPdg[i];
  405. pVpdR = data_def[idxR].vpdPdg[i];
  406. pPwrR = data_def[idxR].pwrPdg[i];
  407. }
  408. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  409. maxPwrT4[i] =
  410. min(pPwrL[intercepts - 1],
  411. pPwrR[intercepts - 1]);
  412. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  413. pPwrL, pVpdL,
  414. intercepts,
  415. vpdTableL[i]);
  416. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  417. pPwrR, pVpdR,
  418. intercepts,
  419. vpdTableR[i]);
  420. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  421. vpdTableI[i][j] =
  422. (u8)(ath9k_hw_interpolate((u16)
  423. FREQ2FBIN(centers.
  424. synth_center,
  425. IS_CHAN_2GHZ
  426. (chan)),
  427. bChans[idxL], bChans[idxR],
  428. vpdTableL[i][j], vpdTableR[i][j]));
  429. }
  430. }
  431. }
  432. k = 0;
  433. for (i = 0; i < numXpdGains; i++) {
  434. if (i == (numXpdGains - 1))
  435. pPdGainBoundaries[i] =
  436. (u16)(maxPwrT4[i] / 2);
  437. else
  438. pPdGainBoundaries[i] =
  439. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  440. pPdGainBoundaries[i] =
  441. min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
  442. minDelta = 0;
  443. if (i == 0) {
  444. if (AR_SREV_9280_20_OR_LATER(ah))
  445. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  446. else
  447. ss = 0;
  448. } else {
  449. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  450. (minPwrT4[i] / 2)) -
  451. tPdGainOverlap + 1 + minDelta);
  452. }
  453. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  454. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  455. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  456. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  457. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  458. ss++;
  459. }
  460. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  461. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  462. (minPwrT4[i] / 2));
  463. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  464. tgtIndex : sizeCurrVpdTable;
  465. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  466. pPDADCValues[k++] = vpdTableI[i][ss++];
  467. }
  468. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  469. vpdTableI[i][sizeCurrVpdTable - 2]);
  470. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  471. if (tgtIndex >= maxIndex) {
  472. while ((ss <= tgtIndex) &&
  473. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  474. tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  475. (ss - maxIndex + 1) * vpdStep));
  476. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  477. 255 : tmpVal);
  478. ss++;
  479. }
  480. }
  481. }
  482. if (eeprom_4k)
  483. pdgain_boundary_default = 58;
  484. else
  485. pdgain_boundary_default = pPdGainBoundaries[i - 1];
  486. while (i < AR5416_PD_GAINS_IN_MASK) {
  487. pPdGainBoundaries[i] = pdgain_boundary_default;
  488. i++;
  489. }
  490. while (k < AR5416_NUM_PDADC_VALUES) {
  491. pPDADCValues[k] = pPDADCValues[k - 1];
  492. k++;
  493. }
  494. }
  495. int ath9k_hw_eeprom_init(struct ath_hw *ah)
  496. {
  497. int status;
  498. if (AR_SREV_9300_20_OR_LATER(ah))
  499. ah->eep_ops = &eep_ar9300_ops;
  500. else if (AR_SREV_9287(ah)) {
  501. ah->eep_ops = &eep_ar9287_ops;
  502. } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
  503. ah->eep_ops = &eep_4k_ops;
  504. } else {
  505. ah->eep_ops = &eep_def_ops;
  506. }
  507. if (!ah->eep_ops->fill_eeprom(ah))
  508. return -EIO;
  509. status = ah->eep_ops->check_eeprom(ah);
  510. return status;
  511. }