PageRenderTime 51ms CodeModel.GetById 21ms RepoModel.GetById 0ms app.codeStats 0ms

/fs/ufs/truncate.c

https://github.com/xdabravoteam/cm-kernel
C | 545 lines | 403 code | 81 blank | 61 comment | 87 complexity | c4ed29ea4b0b24fd7ca88d8901f00cfb MD5 | raw file
  1. /*
  2. * linux/fs/ufs/truncate.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/truncate.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/truncate.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Big-endian to little-endian byte-swapping/bitmaps by
  24. * David S. Miller (davem@caip.rutgers.edu), 1995
  25. */
  26. /*
  27. * Real random numbers for secure rm added 94/02/18
  28. * Idea from Pierre del Perugia <delperug@gla.ecoledoc.ibp.fr>
  29. */
  30. /*
  31. * Adoptation to use page cache and UFS2 write support by
  32. * Evgeniy Dushistov <dushistov@mail.ru>, 2006-2007
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/fs.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/time.h>
  38. #include <linux/stat.h>
  39. #include <linux/string.h>
  40. #include <linux/smp_lock.h>
  41. #include <linux/buffer_head.h>
  42. #include <linux/blkdev.h>
  43. #include <linux/sched.h>
  44. #include <linux/quotaops.h>
  45. #include "ufs_fs.h"
  46. #include "ufs.h"
  47. #include "swab.h"
  48. #include "util.h"
  49. /*
  50. * Secure deletion currently doesn't work. It interacts very badly
  51. * with buffers shared with memory mappings, and for that reason
  52. * can't be done in the truncate() routines. It should instead be
  53. * done separately in "release()" before calling the truncate routines
  54. * that will release the actual file blocks.
  55. *
  56. * Linus
  57. */
  58. #define DIRECT_BLOCK ((inode->i_size + uspi->s_bsize - 1) >> uspi->s_bshift)
  59. #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
  60. static int ufs_trunc_direct(struct inode *inode)
  61. {
  62. struct ufs_inode_info *ufsi = UFS_I(inode);
  63. struct super_block * sb;
  64. struct ufs_sb_private_info * uspi;
  65. void *p;
  66. u64 frag1, frag2, frag3, frag4, block1, block2;
  67. unsigned frag_to_free, free_count;
  68. unsigned i, tmp;
  69. int retry;
  70. UFSD("ENTER: ino %lu\n", inode->i_ino);
  71. sb = inode->i_sb;
  72. uspi = UFS_SB(sb)->s_uspi;
  73. frag_to_free = 0;
  74. free_count = 0;
  75. retry = 0;
  76. frag1 = DIRECT_FRAGMENT;
  77. frag4 = min_t(u32, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
  78. frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
  79. frag3 = frag4 & ~uspi->s_fpbmask;
  80. block1 = block2 = 0;
  81. if (frag2 > frag3) {
  82. frag2 = frag4;
  83. frag3 = frag4 = 0;
  84. } else if (frag2 < frag3) {
  85. block1 = ufs_fragstoblks (frag2);
  86. block2 = ufs_fragstoblks (frag3);
  87. }
  88. UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
  89. " frag3 %llu, frag4 %llu\n", inode->i_ino,
  90. (unsigned long long)frag1, (unsigned long long)frag2,
  91. (unsigned long long)block1, (unsigned long long)block2,
  92. (unsigned long long)frag3, (unsigned long long)frag4);
  93. if (frag1 >= frag2)
  94. goto next1;
  95. /*
  96. * Free first free fragments
  97. */
  98. p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
  99. tmp = ufs_data_ptr_to_cpu(sb, p);
  100. if (!tmp )
  101. ufs_panic (sb, "ufs_trunc_direct", "internal error");
  102. frag2 -= frag1;
  103. frag1 = ufs_fragnum (frag1);
  104. ufs_free_fragments(inode, tmp + frag1, frag2);
  105. mark_inode_dirty(inode);
  106. frag_to_free = tmp + frag1;
  107. next1:
  108. /*
  109. * Free whole blocks
  110. */
  111. for (i = block1 ; i < block2; i++) {
  112. p = ufs_get_direct_data_ptr(uspi, ufsi, i);
  113. tmp = ufs_data_ptr_to_cpu(sb, p);
  114. if (!tmp)
  115. continue;
  116. ufs_data_ptr_clear(uspi, p);
  117. if (free_count == 0) {
  118. frag_to_free = tmp;
  119. free_count = uspi->s_fpb;
  120. } else if (free_count > 0 && frag_to_free == tmp - free_count)
  121. free_count += uspi->s_fpb;
  122. else {
  123. ufs_free_blocks (inode, frag_to_free, free_count);
  124. frag_to_free = tmp;
  125. free_count = uspi->s_fpb;
  126. }
  127. mark_inode_dirty(inode);
  128. }
  129. if (free_count > 0)
  130. ufs_free_blocks (inode, frag_to_free, free_count);
  131. if (frag3 >= frag4)
  132. goto next3;
  133. /*
  134. * Free last free fragments
  135. */
  136. p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
  137. tmp = ufs_data_ptr_to_cpu(sb, p);
  138. if (!tmp )
  139. ufs_panic(sb, "ufs_truncate_direct", "internal error");
  140. frag4 = ufs_fragnum (frag4);
  141. ufs_data_ptr_clear(uspi, p);
  142. ufs_free_fragments (inode, tmp, frag4);
  143. mark_inode_dirty(inode);
  144. next3:
  145. UFSD("EXIT: ino %lu\n", inode->i_ino);
  146. return retry;
  147. }
  148. static int ufs_trunc_indirect(struct inode *inode, u64 offset, void *p)
  149. {
  150. struct super_block * sb;
  151. struct ufs_sb_private_info * uspi;
  152. struct ufs_buffer_head * ind_ubh;
  153. void *ind;
  154. u64 tmp, indirect_block, i, frag_to_free;
  155. unsigned free_count;
  156. int retry;
  157. UFSD("ENTER: ino %lu, offset %llu, p: %p\n",
  158. inode->i_ino, (unsigned long long)offset, p);
  159. BUG_ON(!p);
  160. sb = inode->i_sb;
  161. uspi = UFS_SB(sb)->s_uspi;
  162. frag_to_free = 0;
  163. free_count = 0;
  164. retry = 0;
  165. tmp = ufs_data_ptr_to_cpu(sb, p);
  166. if (!tmp)
  167. return 0;
  168. ind_ubh = ubh_bread(sb, tmp, uspi->s_bsize);
  169. if (tmp != ufs_data_ptr_to_cpu(sb, p)) {
  170. ubh_brelse (ind_ubh);
  171. return 1;
  172. }
  173. if (!ind_ubh) {
  174. ufs_data_ptr_clear(uspi, p);
  175. return 0;
  176. }
  177. indirect_block = (DIRECT_BLOCK > offset) ? (DIRECT_BLOCK - offset) : 0;
  178. for (i = indirect_block; i < uspi->s_apb; i++) {
  179. ind = ubh_get_data_ptr(uspi, ind_ubh, i);
  180. tmp = ufs_data_ptr_to_cpu(sb, ind);
  181. if (!tmp)
  182. continue;
  183. ufs_data_ptr_clear(uspi, ind);
  184. ubh_mark_buffer_dirty(ind_ubh);
  185. if (free_count == 0) {
  186. frag_to_free = tmp;
  187. free_count = uspi->s_fpb;
  188. } else if (free_count > 0 && frag_to_free == tmp - free_count)
  189. free_count += uspi->s_fpb;
  190. else {
  191. ufs_free_blocks (inode, frag_to_free, free_count);
  192. frag_to_free = tmp;
  193. free_count = uspi->s_fpb;
  194. }
  195. mark_inode_dirty(inode);
  196. }
  197. if (free_count > 0) {
  198. ufs_free_blocks (inode, frag_to_free, free_count);
  199. }
  200. for (i = 0; i < uspi->s_apb; i++)
  201. if (!ufs_is_data_ptr_zero(uspi,
  202. ubh_get_data_ptr(uspi, ind_ubh, i)))
  203. break;
  204. if (i >= uspi->s_apb) {
  205. tmp = ufs_data_ptr_to_cpu(sb, p);
  206. ufs_data_ptr_clear(uspi, p);
  207. ufs_free_blocks (inode, tmp, uspi->s_fpb);
  208. mark_inode_dirty(inode);
  209. ubh_bforget(ind_ubh);
  210. ind_ubh = NULL;
  211. }
  212. if (IS_SYNC(inode) && ind_ubh && ubh_buffer_dirty(ind_ubh)) {
  213. ubh_ll_rw_block(SWRITE, ind_ubh);
  214. ubh_wait_on_buffer (ind_ubh);
  215. }
  216. ubh_brelse (ind_ubh);
  217. UFSD("EXIT: ino %lu\n", inode->i_ino);
  218. return retry;
  219. }
  220. static int ufs_trunc_dindirect(struct inode *inode, u64 offset, void *p)
  221. {
  222. struct super_block * sb;
  223. struct ufs_sb_private_info * uspi;
  224. struct ufs_buffer_head *dind_bh;
  225. u64 i, tmp, dindirect_block;
  226. void *dind;
  227. int retry = 0;
  228. UFSD("ENTER: ino %lu\n", inode->i_ino);
  229. sb = inode->i_sb;
  230. uspi = UFS_SB(sb)->s_uspi;
  231. dindirect_block = (DIRECT_BLOCK > offset)
  232. ? ((DIRECT_BLOCK - offset) >> uspi->s_apbshift) : 0;
  233. retry = 0;
  234. tmp = ufs_data_ptr_to_cpu(sb, p);
  235. if (!tmp)
  236. return 0;
  237. dind_bh = ubh_bread(sb, tmp, uspi->s_bsize);
  238. if (tmp != ufs_data_ptr_to_cpu(sb, p)) {
  239. ubh_brelse (dind_bh);
  240. return 1;
  241. }
  242. if (!dind_bh) {
  243. ufs_data_ptr_clear(uspi, p);
  244. return 0;
  245. }
  246. for (i = dindirect_block ; i < uspi->s_apb ; i++) {
  247. dind = ubh_get_data_ptr(uspi, dind_bh, i);
  248. tmp = ufs_data_ptr_to_cpu(sb, dind);
  249. if (!tmp)
  250. continue;
  251. retry |= ufs_trunc_indirect (inode, offset + (i << uspi->s_apbshift), dind);
  252. ubh_mark_buffer_dirty(dind_bh);
  253. }
  254. for (i = 0; i < uspi->s_apb; i++)
  255. if (!ufs_is_data_ptr_zero(uspi,
  256. ubh_get_data_ptr(uspi, dind_bh, i)))
  257. break;
  258. if (i >= uspi->s_apb) {
  259. tmp = ufs_data_ptr_to_cpu(sb, p);
  260. ufs_data_ptr_clear(uspi, p);
  261. ufs_free_blocks(inode, tmp, uspi->s_fpb);
  262. mark_inode_dirty(inode);
  263. ubh_bforget(dind_bh);
  264. dind_bh = NULL;
  265. }
  266. if (IS_SYNC(inode) && dind_bh && ubh_buffer_dirty(dind_bh)) {
  267. ubh_ll_rw_block(SWRITE, dind_bh);
  268. ubh_wait_on_buffer (dind_bh);
  269. }
  270. ubh_brelse (dind_bh);
  271. UFSD("EXIT: ino %lu\n", inode->i_ino);
  272. return retry;
  273. }
  274. static int ufs_trunc_tindirect(struct inode *inode)
  275. {
  276. struct super_block *sb = inode->i_sb;
  277. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  278. struct ufs_inode_info *ufsi = UFS_I(inode);
  279. struct ufs_buffer_head * tind_bh;
  280. u64 tindirect_block, tmp, i;
  281. void *tind, *p;
  282. int retry;
  283. UFSD("ENTER: ino %lu\n", inode->i_ino);
  284. retry = 0;
  285. tindirect_block = (DIRECT_BLOCK > (UFS_NDADDR + uspi->s_apb + uspi->s_2apb))
  286. ? ((DIRECT_BLOCK - UFS_NDADDR - uspi->s_apb - uspi->s_2apb) >> uspi->s_2apbshift) : 0;
  287. p = ufs_get_direct_data_ptr(uspi, ufsi, UFS_TIND_BLOCK);
  288. if (!(tmp = ufs_data_ptr_to_cpu(sb, p)))
  289. return 0;
  290. tind_bh = ubh_bread (sb, tmp, uspi->s_bsize);
  291. if (tmp != ufs_data_ptr_to_cpu(sb, p)) {
  292. ubh_brelse (tind_bh);
  293. return 1;
  294. }
  295. if (!tind_bh) {
  296. ufs_data_ptr_clear(uspi, p);
  297. return 0;
  298. }
  299. for (i = tindirect_block ; i < uspi->s_apb ; i++) {
  300. tind = ubh_get_data_ptr(uspi, tind_bh, i);
  301. retry |= ufs_trunc_dindirect(inode, UFS_NDADDR +
  302. uspi->s_apb + ((i + 1) << uspi->s_2apbshift), tind);
  303. ubh_mark_buffer_dirty(tind_bh);
  304. }
  305. for (i = 0; i < uspi->s_apb; i++)
  306. if (!ufs_is_data_ptr_zero(uspi,
  307. ubh_get_data_ptr(uspi, tind_bh, i)))
  308. break;
  309. if (i >= uspi->s_apb) {
  310. tmp = ufs_data_ptr_to_cpu(sb, p);
  311. ufs_data_ptr_clear(uspi, p);
  312. ufs_free_blocks(inode, tmp, uspi->s_fpb);
  313. mark_inode_dirty(inode);
  314. ubh_bforget(tind_bh);
  315. tind_bh = NULL;
  316. }
  317. if (IS_SYNC(inode) && tind_bh && ubh_buffer_dirty(tind_bh)) {
  318. ubh_ll_rw_block(SWRITE, tind_bh);
  319. ubh_wait_on_buffer (tind_bh);
  320. }
  321. ubh_brelse (tind_bh);
  322. UFSD("EXIT: ino %lu\n", inode->i_ino);
  323. return retry;
  324. }
  325. static int ufs_alloc_lastblock(struct inode *inode)
  326. {
  327. int err = 0;
  328. struct super_block *sb = inode->i_sb;
  329. struct address_space *mapping = inode->i_mapping;
  330. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  331. unsigned i, end;
  332. sector_t lastfrag;
  333. struct page *lastpage;
  334. struct buffer_head *bh;
  335. u64 phys64;
  336. lastfrag = (i_size_read(inode) + uspi->s_fsize - 1) >> uspi->s_fshift;
  337. if (!lastfrag)
  338. goto out;
  339. lastfrag--;
  340. lastpage = ufs_get_locked_page(mapping, lastfrag >>
  341. (PAGE_CACHE_SHIFT - inode->i_blkbits));
  342. if (IS_ERR(lastpage)) {
  343. err = -EIO;
  344. goto out;
  345. }
  346. end = lastfrag & ((1 << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1);
  347. bh = page_buffers(lastpage);
  348. for (i = 0; i < end; ++i)
  349. bh = bh->b_this_page;
  350. err = ufs_getfrag_block(inode, lastfrag, bh, 1);
  351. if (unlikely(err))
  352. goto out_unlock;
  353. if (buffer_new(bh)) {
  354. clear_buffer_new(bh);
  355. unmap_underlying_metadata(bh->b_bdev,
  356. bh->b_blocknr);
  357. /*
  358. * we do not zeroize fragment, because of
  359. * if it maped to hole, it already contains zeroes
  360. */
  361. set_buffer_uptodate(bh);
  362. mark_buffer_dirty(bh);
  363. set_page_dirty(lastpage);
  364. }
  365. if (lastfrag >= UFS_IND_FRAGMENT) {
  366. end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
  367. phys64 = bh->b_blocknr + 1;
  368. for (i = 0; i < end; ++i) {
  369. bh = sb_getblk(sb, i + phys64);
  370. lock_buffer(bh);
  371. memset(bh->b_data, 0, sb->s_blocksize);
  372. set_buffer_uptodate(bh);
  373. mark_buffer_dirty(bh);
  374. unlock_buffer(bh);
  375. sync_dirty_buffer(bh);
  376. brelse(bh);
  377. }
  378. }
  379. out_unlock:
  380. ufs_put_locked_page(lastpage);
  381. out:
  382. return err;
  383. }
  384. int ufs_truncate(struct inode *inode, loff_t old_i_size)
  385. {
  386. struct ufs_inode_info *ufsi = UFS_I(inode);
  387. struct super_block *sb = inode->i_sb;
  388. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  389. int retry, err = 0;
  390. UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
  391. inode->i_ino, (unsigned long long)i_size_read(inode),
  392. (unsigned long long)old_i_size);
  393. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  394. S_ISLNK(inode->i_mode)))
  395. return -EINVAL;
  396. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  397. return -EPERM;
  398. err = ufs_alloc_lastblock(inode);
  399. if (err) {
  400. i_size_write(inode, old_i_size);
  401. goto out;
  402. }
  403. block_truncate_page(inode->i_mapping, inode->i_size, ufs_getfrag_block);
  404. lock_kernel();
  405. while (1) {
  406. retry = ufs_trunc_direct(inode);
  407. retry |= ufs_trunc_indirect(inode, UFS_IND_BLOCK,
  408. ufs_get_direct_data_ptr(uspi, ufsi,
  409. UFS_IND_BLOCK));
  410. retry |= ufs_trunc_dindirect(inode, UFS_IND_BLOCK + uspi->s_apb,
  411. ufs_get_direct_data_ptr(uspi, ufsi,
  412. UFS_DIND_BLOCK));
  413. retry |= ufs_trunc_tindirect (inode);
  414. if (!retry)
  415. break;
  416. if (IS_SYNC(inode) && (inode->i_state & I_DIRTY))
  417. ufs_sync_inode (inode);
  418. blk_run_address_space(inode->i_mapping);
  419. yield();
  420. }
  421. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  422. ufsi->i_lastfrag = DIRECT_FRAGMENT;
  423. unlock_kernel();
  424. mark_inode_dirty(inode);
  425. out:
  426. UFSD("EXIT: err %d\n", err);
  427. return err;
  428. }
  429. /*
  430. * We don't define our `inode->i_op->truncate', and call it here,
  431. * because of:
  432. * - there is no way to know old size
  433. * - there is no way inform user about error, if it happens in `truncate'
  434. */
  435. static int ufs_setattr(struct dentry *dentry, struct iattr *attr)
  436. {
  437. struct inode *inode = dentry->d_inode;
  438. unsigned int ia_valid = attr->ia_valid;
  439. int error;
  440. error = inode_change_ok(inode, attr);
  441. if (error)
  442. return error;
  443. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  444. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  445. error = dquot_transfer(inode, attr);
  446. if (error)
  447. return error;
  448. }
  449. if (ia_valid & ATTR_SIZE &&
  450. attr->ia_size != i_size_read(inode)) {
  451. loff_t old_i_size = inode->i_size;
  452. dquot_initialize(inode);
  453. error = vmtruncate(inode, attr->ia_size);
  454. if (error)
  455. return error;
  456. error = ufs_truncate(inode, old_i_size);
  457. if (error)
  458. return error;
  459. }
  460. return inode_setattr(inode, attr);
  461. }
  462. const struct inode_operations ufs_file_inode_operations = {
  463. .setattr = ufs_setattr,
  464. };