/pandas/tests/reshape/concat/test_index.py
Python | 389 lines | 305 code | 62 blank | 22 comment | 11 complexity | 64c1ecb2c063989e86bb7cd8fbbaba13 MD5 | raw file
Possible License(s): BSD-3-Clause
- import numpy as np
- import pytest
- from pandas.errors import PerformanceWarning
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- MultiIndex,
- Series,
- concat,
- )
- import pandas._testing as tm
- class TestIndexConcat:
- def test_concat_ignore_index(self, sort):
- frame1 = DataFrame(
- {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]}
- )
- frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]})
- frame1.index = Index(["x", "y", "z"])
- frame2.index = Index(["x", "y", "q"])
- v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort)
- nan = np.nan
- expected = DataFrame(
- [
- [nan, nan, nan, 4.3],
- ["a", 1, 4.5, 5.2],
- ["b", 2, 3.2, 2.2],
- ["c", 3, 1.2, nan],
- ],
- index=Index(["q", "x", "y", "z"]),
- )
- if not sort:
- expected = expected.loc[["x", "y", "z", "q"]]
- tm.assert_frame_equal(v1, expected)
- @pytest.mark.parametrize(
- "name_in1,name_in2,name_in3,name_out",
- [
- ("idx", "idx", "idx", "idx"),
- ("idx", "idx", None, None),
- ("idx", None, None, None),
- ("idx1", "idx2", None, None),
- ("idx1", "idx1", "idx2", None),
- ("idx1", "idx2", "idx3", None),
- (None, None, None, None),
- ],
- )
- def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out):
- # GH13475
- indices = [
- Index(["a", "b", "c"], name=name_in1),
- Index(["b", "c", "d"], name=name_in2),
- Index(["c", "d", "e"], name=name_in3),
- ]
- frames = [
- DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"])
- ]
- result = concat(frames, axis=1)
- exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out)
- expected = DataFrame(
- {
- "x": [0, 1, 2, np.nan, np.nan],
- "y": [np.nan, 0, 1, 2, np.nan],
- "z": [np.nan, np.nan, 0, 1, 2],
- },
- index=exp_ind,
- )
- tm.assert_frame_equal(result, expected)
- def test_concat_rename_index(self):
- a = DataFrame(
- np.random.rand(3, 3),
- columns=list("ABC"),
- index=Index(list("abc"), name="index_a"),
- )
- b = DataFrame(
- np.random.rand(3, 3),
- columns=list("ABC"),
- index=Index(list("abc"), name="index_b"),
- )
- result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"])
- exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"])
- names = list(exp.index.names)
- names[1] = "lvl1"
- exp.index.set_names(names, inplace=True)
- tm.assert_frame_equal(result, exp)
- assert result.index.names == exp.index.names
- def test_concat_copy_index_series(self, axis):
- # GH 29879
- ser = Series([1, 2])
- comb = concat([ser, ser], axis=axis, copy=True)
- assert comb.index is not ser.index
- def test_concat_copy_index_frame(self, axis):
- # GH 29879
- df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"])
- comb = concat([df, df], axis=axis, copy=True)
- assert comb.index is not df.index
- assert comb.columns is not df.columns
- def test_default_index(self):
- # is_series and ignore_index
- s1 = Series([1, 2, 3], name="x")
- s2 = Series([4, 5, 6], name="y")
- res = concat([s1, s2], axis=1, ignore_index=True)
- assert isinstance(res.columns, pd.RangeIndex)
- exp = DataFrame([[1, 4], [2, 5], [3, 6]])
- # use check_index_type=True to check the result have
- # RangeIndex (default index)
- tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
- # is_series and all inputs have no names
- s1 = Series([1, 2, 3])
- s2 = Series([4, 5, 6])
- res = concat([s1, s2], axis=1, ignore_index=False)
- assert isinstance(res.columns, pd.RangeIndex)
- exp = DataFrame([[1, 4], [2, 5], [3, 6]])
- exp.columns = pd.RangeIndex(2)
- tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
- # is_dataframe and ignore_index
- df1 = DataFrame({"A": [1, 2], "B": [5, 6]})
- df2 = DataFrame({"A": [3, 4], "B": [7, 8]})
- res = concat([df1, df2], axis=0, ignore_index=True)
- exp = DataFrame([[1, 5], [2, 6], [3, 7], [4, 8]], columns=["A", "B"])
- tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
- res = concat([df1, df2], axis=1, ignore_index=True)
- exp = DataFrame([[1, 5, 3, 7], [2, 6, 4, 8]])
- tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
- def test_dups_index(self):
- # GH 4771
- # single dtypes
- df = DataFrame(
- np.random.randint(0, 10, size=40).reshape(10, 4),
- columns=["A", "A", "C", "C"],
- )
- result = concat([df, df], axis=1)
- tm.assert_frame_equal(result.iloc[:, :4], df)
- tm.assert_frame_equal(result.iloc[:, 4:], df)
- result = concat([df, df], axis=0)
- tm.assert_frame_equal(result.iloc[:10], df)
- tm.assert_frame_equal(result.iloc[10:], df)
- # multi dtypes
- df = concat(
- [
- DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]),
- DataFrame(
- np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"]
- ),
- ],
- axis=1,
- )
- result = concat([df, df], axis=1)
- tm.assert_frame_equal(result.iloc[:, :6], df)
- tm.assert_frame_equal(result.iloc[:, 6:], df)
- result = concat([df, df], axis=0)
- tm.assert_frame_equal(result.iloc[:10], df)
- tm.assert_frame_equal(result.iloc[10:], df)
- # append
- result = df.iloc[0:8, :]._append(df.iloc[8:])
- tm.assert_frame_equal(result, df)
- result = df.iloc[0:8, :]._append(df.iloc[8:9])._append(df.iloc[9:10])
- tm.assert_frame_equal(result, df)
- expected = concat([df, df], axis=0)
- result = df._append(df)
- tm.assert_frame_equal(result, expected)
- class TestMultiIndexConcat:
- def test_concat_multiindex_with_keys(self, multiindex_dataframe_random_data):
- frame = multiindex_dataframe_random_data
- index = frame.index
- result = concat([frame, frame], keys=[0, 1], names=["iteration"])
- assert result.index.names == ("iteration",) + index.names
- tm.assert_frame_equal(result.loc[0], frame)
- tm.assert_frame_equal(result.loc[1], frame)
- assert result.index.nlevels == 3
- def test_concat_multiindex_with_none_in_index_names(self):
- # GH 15787
- index = MultiIndex.from_product([[1], range(5)], names=["level1", None])
- df = DataFrame({"col": range(5)}, index=index, dtype=np.int32)
- result = concat([df, df], keys=[1, 2], names=["level2"])
- index = MultiIndex.from_product(
- [[1, 2], [1], range(5)], names=["level2", "level1", None]
- )
- expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32)
- tm.assert_frame_equal(result, expected)
- result = concat([df, df[:2]], keys=[1, 2], names=["level2"])
- level2 = [1] * 5 + [2] * 2
- level1 = [1] * 7
- no_name = list(range(5)) + list(range(2))
- tuples = list(zip(level2, level1, no_name))
- index = MultiIndex.from_tuples(tuples, names=["level2", "level1", None])
- expected = DataFrame({"col": no_name}, index=index, dtype=np.int32)
- tm.assert_frame_equal(result, expected)
- def test_concat_multiindex_rangeindex(self):
- # GH13542
- # when multi-index levels are RangeIndex objects
- # there is a bug in concat with objects of len 1
- df = DataFrame(np.random.randn(9, 2))
- df.index = MultiIndex(
- levels=[pd.RangeIndex(3), pd.RangeIndex(3)],
- codes=[np.repeat(np.arange(3), 3), np.tile(np.arange(3), 3)],
- )
- res = concat([df.iloc[[2, 3, 4], :], df.iloc[[5], :]])
- exp = df.iloc[[2, 3, 4, 5], :]
- tm.assert_frame_equal(res, exp)
- def test_concat_multiindex_dfs_with_deepcopy(self):
- # GH 9967
- from copy import deepcopy
- example_multiindex1 = MultiIndex.from_product([["a"], ["b"]])
- example_dataframe1 = DataFrame([0], index=example_multiindex1)
- example_multiindex2 = MultiIndex.from_product([["a"], ["c"]])
- example_dataframe2 = DataFrame([1], index=example_multiindex2)
- example_dict = {"s1": example_dataframe1, "s2": example_dataframe2}
- expected_index = MultiIndex(
- levels=[["s1", "s2"], ["a"], ["b", "c"]],
- codes=[[0, 1], [0, 0], [0, 1]],
- names=["testname", None, None],
- )
- expected = DataFrame([[0], [1]], index=expected_index)
- result_copy = concat(deepcopy(example_dict), names=["testname"])
- tm.assert_frame_equal(result_copy, expected)
- result_no_copy = concat(example_dict, names=["testname"])
- tm.assert_frame_equal(result_no_copy, expected)
- @pytest.mark.parametrize(
- "mi1_list",
- [
- [["a"], range(2)],
- [["b"], np.arange(2.0, 4.0)],
- [["c"], ["A", "B"]],
- [["d"], pd.date_range(start="2017", end="2018", periods=2)],
- ],
- )
- @pytest.mark.parametrize(
- "mi2_list",
- [
- [["a"], range(2)],
- [["b"], np.arange(2.0, 4.0)],
- [["c"], ["A", "B"]],
- [["d"], pd.date_range(start="2017", end="2018", periods=2)],
- ],
- )
- def test_concat_with_various_multiindex_dtypes(
- self, mi1_list: list, mi2_list: list
- ):
- # GitHub #23478
- mi1 = MultiIndex.from_product(mi1_list)
- mi2 = MultiIndex.from_product(mi2_list)
- df1 = DataFrame(np.zeros((1, len(mi1))), columns=mi1)
- df2 = DataFrame(np.zeros((1, len(mi2))), columns=mi2)
- if mi1_list[0] == mi2_list[0]:
- expected_mi = MultiIndex(
- levels=[mi1_list[0], list(mi1_list[1])],
- codes=[[0, 0, 0, 0], [0, 1, 0, 1]],
- )
- else:
- expected_mi = MultiIndex(
- levels=[
- mi1_list[0] + mi2_list[0],
- list(mi1_list[1]) + list(mi2_list[1]),
- ],
- codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
- )
- expected_df = DataFrame(np.zeros((1, len(expected_mi))), columns=expected_mi)
- with tm.assert_produces_warning(None):
- result_df = concat((df1, df2), axis=1)
- tm.assert_frame_equal(expected_df, result_df)
- def test_concat_multiindex_(self):
- # GitHub #44786
- df = DataFrame({"col": ["a", "b", "c"]}, index=["1", "2", "2"])
- df = concat([df], keys=["X"])
- iterables = [["X"], ["1", "2", "2"]]
- result_index = df.index
- expected_index = MultiIndex.from_product(iterables)
- tm.assert_index_equal(result_index, expected_index)
- result_df = df
- expected_df = DataFrame(
- {"col": ["a", "b", "c"]}, index=MultiIndex.from_product(iterables)
- )
- tm.assert_frame_equal(result_df, expected_df)
- def test_concat_with_key_not_unique(self):
- # GitHub #46519
- df1 = DataFrame({"name": [1]})
- df2 = DataFrame({"name": [2]})
- df3 = DataFrame({"name": [3]})
- df_a = concat([df1, df2, df3], keys=["x", "y", "x"])
- # the warning is caused by indexing unsorted multi-index
- with tm.assert_produces_warning(
- PerformanceWarning, match="indexing past lexsort depth"
- ):
- out_a = df_a.loc[("x", 0), :]
- df_b = DataFrame(
- {"name": [1, 2, 3]}, index=Index([("x", 0), ("y", 0), ("x", 0)])
- )
- with tm.assert_produces_warning(
- PerformanceWarning, match="indexing past lexsort depth"
- ):
- out_b = df_b.loc[("x", 0)]
- tm.assert_frame_equal(out_a, out_b)
- df1 = DataFrame({"name": ["a", "a", "b"]})
- df2 = DataFrame({"name": ["a", "b"]})
- df3 = DataFrame({"name": ["c", "d"]})
- df_a = concat([df1, df2, df3], keys=["x", "y", "x"])
- with tm.assert_produces_warning(
- PerformanceWarning, match="indexing past lexsort depth"
- ):
- out_a = df_a.loc[("x", 0), :]
- df_b = DataFrame(
- {
- "a": ["x", "x", "x", "y", "y", "x", "x"],
- "b": [0, 1, 2, 0, 1, 0, 1],
- "name": list("aababcd"),
- }
- ).set_index(["a", "b"])
- df_b.index.names = [None, None]
- with tm.assert_produces_warning(
- PerformanceWarning, match="indexing past lexsort depth"
- ):
- out_b = df_b.loc[("x", 0), :]
- tm.assert_frame_equal(out_a, out_b)
- def test_concat_with_duplicated_levels(self):
- # keyword levels should be unique
- df1 = DataFrame({"A": [1]}, index=["x"])
- df2 = DataFrame({"A": [1]}, index=["y"])
- msg = r"Level values not unique: \['x', 'y', 'y'\]"
- with pytest.raises(ValueError, match=msg):
- concat([df1, df2], keys=["x", "y"], levels=[["x", "y", "y"]])
- @pytest.mark.parametrize("levels", [[["x", "y"]], [["x", "y", "y"]]])
- def test_concat_with_levels_with_none_keys(self, levels):
- df1 = DataFrame({"A": [1]}, index=["x"])
- df2 = DataFrame({"A": [1]}, index=["y"])
- msg = "levels supported only when keys is not None"
- with pytest.raises(ValueError, match=msg):
- concat([df1, df2], levels=levels)