/pandas/tests/test_groupby.py

https://github.com/ara818/pandas · Python · 943 lines · 684 code · 207 blank · 52 comment · 45 complexity · ee03aa2d6f6bf45e99fe31b6368934ef MD5 · raw file

  1. import nose
  2. import unittest
  3. from datetime import datetime
  4. from numpy import nan
  5. from pandas.core.daterange import DateRange
  6. from pandas.core.index import Index, MultiIndex
  7. from pandas.core.common import rands, groupby
  8. from pandas.core.frame import DataFrame
  9. from pandas.core.series import Series
  10. from pandas.util.testing import (assert_panel_equal, assert_frame_equal,
  11. assert_series_equal, assert_almost_equal)
  12. from pandas.core.panel import Panel
  13. from collections import defaultdict
  14. import pandas._tseries as lib
  15. import pandas.core.datetools as dt
  16. import numpy as np
  17. import pandas.util.testing as tm
  18. def commonSetUp(self):
  19. self.dateRange = DateRange('1/1/2005', periods=250, offset=dt.bday)
  20. self.stringIndex = Index([rands(8).upper() for x in xrange(250)])
  21. self.groupId = Series([x[0] for x in self.stringIndex],
  22. index=self.stringIndex)
  23. self.groupDict = dict((k, v) for k, v in self.groupId.iteritems())
  24. self.columnIndex = Index(['A', 'B', 'C', 'D', 'E'])
  25. randMat = np.random.randn(250, 5)
  26. self.stringMatrix = DataFrame(randMat, columns=self.columnIndex,
  27. index=self.stringIndex)
  28. self.timeMatrix = DataFrame(randMat, columns=self.columnIndex,
  29. index=self.dateRange)
  30. class TestGroupBy(unittest.TestCase):
  31. def setUp(self):
  32. self.ts = tm.makeTimeSeries()
  33. self.seriesd = tm.getSeriesData()
  34. self.tsd = tm.getTimeSeriesData()
  35. self.frame = DataFrame(self.seriesd)
  36. self.tsframe = DataFrame(self.tsd)
  37. self.df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
  38. 'foo', 'bar', 'foo', 'foo'],
  39. 'B' : ['one', 'one', 'two', 'three',
  40. 'two', 'two', 'one', 'three'],
  41. 'C' : np.random.randn(8),
  42. 'D' : np.random.randn(8)})
  43. index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
  44. ['one', 'two', 'three']],
  45. labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
  46. [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
  47. names=['first', 'second'])
  48. self.mframe = DataFrame(np.random.randn(10, 3), index=index,
  49. columns=['A', 'B', 'C'])
  50. def test_basic(self):
  51. data = Series(np.arange(9) // 3, index=np.arange(9))
  52. index = np.arange(9)
  53. np.random.shuffle(index)
  54. data = data.reindex(index)
  55. grouped = data.groupby(lambda x: x // 3)
  56. for k, v in grouped:
  57. self.assertEqual(len(v), 3)
  58. agged = grouped.aggregate(np.mean)
  59. self.assertEqual(agged[1], 1)
  60. assert_series_equal(agged, grouped.agg(np.mean)) # shorthand
  61. assert_series_equal(agged, grouped.mean())
  62. # Cython only returning floating point for now...
  63. assert_series_equal(grouped.agg(np.sum).astype(float),
  64. grouped.sum())
  65. transformed = grouped.transform(lambda x: x * x.sum())
  66. self.assertEqual(transformed[7], 12)
  67. value_grouped = data.groupby(data)
  68. assert_series_equal(value_grouped.aggregate(np.mean), agged)
  69. # complex agg
  70. agged = grouped.aggregate([np.mean, np.std])
  71. agged = grouped.aggregate({'one' : np.mean,
  72. 'two' : np.std})
  73. group_constants = {
  74. 0 : 10,
  75. 1 : 20,
  76. 2 : 30
  77. }
  78. agged = grouped.agg(lambda x: group_constants[x.name] + x.mean())
  79. self.assertEqual(agged[1], 21)
  80. # corner cases
  81. self.assertRaises(Exception, grouped.aggregate, lambda x: x * 2)
  82. def test_agg_regression1(self):
  83. grouped = self.tsframe.groupby([lambda x: x.year, lambda x: x.month])
  84. result = grouped.agg(np.mean)
  85. expected = grouped.mean()
  86. assert_frame_equal(result, expected)
  87. def test_get_group(self):
  88. wp = tm.makePanel()
  89. grouped = wp.groupby(lambda x: x.month, axis='major')
  90. gp = grouped.get_group(1)
  91. expected = wp.reindex(major=[x for x in wp.major_axis if x.month == 1])
  92. assert_panel_equal(gp, expected)
  93. def test_agg_apply_corner(self):
  94. # nothing to group, all NA
  95. grouped = self.ts.groupby(self.ts * np.nan)
  96. assert_series_equal(grouped.sum(), Series([]))
  97. assert_series_equal(grouped.agg(np.sum), Series([]))
  98. assert_series_equal(grouped.apply(np.sum), Series([]))
  99. # DataFrame
  100. grouped = self.tsframe.groupby(self.tsframe['A'] * np.nan)
  101. assert_frame_equal(grouped.sum(), DataFrame({}))
  102. assert_frame_equal(grouped.agg(np.sum), DataFrame({}))
  103. assert_frame_equal(grouped.apply(np.sum), DataFrame({}))
  104. def test_len(self):
  105. df = tm.makeTimeDataFrame()
  106. grouped = df.groupby([lambda x: x.year,
  107. lambda x: x.month,
  108. lambda x: x.day])
  109. self.assertEquals(len(grouped), len(df))
  110. grouped = df.groupby([lambda x: x.year,
  111. lambda x: x.month])
  112. expected = len(set([(x.year, x.month) for x in df.index]))
  113. self.assertEquals(len(grouped), expected)
  114. def test_groups(self):
  115. grouped = self.df.groupby(['A'])
  116. groups = grouped.groups
  117. self.assert_(groups is grouped.groups) # caching works
  118. for k, v in grouped.groups.iteritems():
  119. self.assert_((self.df.ix[v]['A'] == k).all())
  120. grouped = self.df.groupby(['A', 'B'])
  121. groups = grouped.groups
  122. self.assert_(groups is grouped.groups) # caching works
  123. for k, v in grouped.groups.iteritems():
  124. self.assert_((self.df.ix[v]['A'] == k[0]).all())
  125. self.assert_((self.df.ix[v]['B'] == k[1]).all())
  126. def test_aggregate_str_func(self):
  127. def _check_results(grouped):
  128. # single series
  129. result = grouped['A'].agg('std')
  130. expected = grouped['A'].std()
  131. assert_series_equal(result, expected)
  132. # group frame by function name
  133. result = grouped.aggregate('var')
  134. expected = grouped.var()
  135. assert_frame_equal(result, expected)
  136. # group frame by function dict
  137. result = grouped.agg({'A' : 'var', 'B' : 'std', 'C' : 'mean'})
  138. expected = DataFrame({'A' : grouped['A'].var(),
  139. 'B' : grouped['B'].std(),
  140. 'C' : grouped['C'].mean()})
  141. assert_frame_equal(result, expected)
  142. by_weekday = self.tsframe.groupby(lambda x: x.weekday())
  143. _check_results(by_weekday)
  144. by_mwkday = self.tsframe.groupby([lambda x: x.month,
  145. lambda x: x.weekday()])
  146. _check_results(by_mwkday)
  147. def test_basic_regression(self):
  148. # regression
  149. T = [1.0*x for x in range(1,10) *10][:1095]
  150. result = Series(T, range(0, len(T)))
  151. groupings = np.random.random((1100,))
  152. groupings = Series(groupings, range(0, len(groupings))) * 10.
  153. grouped = result.groupby(groupings)
  154. grouped.mean()
  155. def test_transform(self):
  156. data = Series(np.arange(9) // 3, index=np.arange(9))
  157. index = np.arange(9)
  158. np.random.shuffle(index)
  159. data = data.reindex(index)
  160. grouped = data.groupby(lambda x: x // 3)
  161. transformed = grouped.transform(lambda x: x * x.sum())
  162. self.assertEqual(transformed[7], 12)
  163. def test_transform_broadcast(self):
  164. grouped = self.ts.groupby(lambda x: x.month)
  165. result = grouped.transform(np.mean)
  166. self.assert_(result.index.equals(self.ts.index))
  167. for _, gp in grouped:
  168. self.assert_((result.reindex(gp.index) == gp.mean()).all())
  169. grouped = self.tsframe.groupby(lambda x: x.month)
  170. result = grouped.transform(np.mean)
  171. self.assert_(result.index.equals(self.tsframe.index))
  172. for _, gp in grouped:
  173. agged = gp.mean()
  174. res = result.reindex(gp.index)
  175. for col in self.tsframe:
  176. self.assert_((res[col] == agged[col]).all())
  177. # group columns
  178. grouped = self.tsframe.groupby({'A' : 0, 'B' : 0, 'C' : 1, 'D' : 1},
  179. axis=1)
  180. result = grouped.transform(np.mean)
  181. self.assert_(result.index.equals(self.tsframe.index))
  182. self.assert_(result.columns.equals(self.tsframe.columns))
  183. for _, gp in grouped:
  184. agged = gp.mean(1)
  185. res = result.reindex(columns=gp.columns)
  186. for idx in gp.index:
  187. self.assert_((res.xs(idx) == agged[idx]).all())
  188. def test_transform_multiple(self):
  189. grouped = self.ts.groupby([lambda x: x.year, lambda x: x.month])
  190. transformed = grouped.transform(lambda x: x * 2)
  191. broadcasted = grouped.transform(np.mean)
  192. def test_dispatch_transform(self):
  193. df = self.tsframe[::5].reindex(self.tsframe.index)
  194. grouped = df.groupby(lambda x: x.month)
  195. filled = grouped.fillna(method='pad')
  196. fillit = lambda x: x.fillna(method='pad')
  197. expected = df.groupby(lambda x: x.month).transform(fillit)
  198. assert_frame_equal(filled, expected)
  199. def test_with_na(self):
  200. index = Index(np.arange(10))
  201. values = Series(np.ones(10), index)
  202. labels = Series([nan, 'foo', 'bar', 'bar', nan, nan, 'bar',
  203. 'bar', nan, 'foo'], index=index)
  204. grouped = values.groupby(labels)
  205. agged = grouped.agg(len)
  206. expected = Series([4, 2], index=['bar', 'foo'])
  207. assert_series_equal(agged, expected)
  208. def test_attr_wrapper(self):
  209. grouped = self.ts.groupby(lambda x: x.weekday())
  210. result = grouped.std()
  211. expected = grouped.agg(lambda x: np.std(x, ddof=1))
  212. assert_series_equal(result, expected)
  213. # this is pretty cool
  214. result = grouped.describe()
  215. expected = {}
  216. for name, gp in grouped:
  217. expected[name] = gp.describe()
  218. expected = DataFrame(expected).T
  219. assert_frame_equal(result, expected)
  220. # get attribute
  221. result = grouped.dtype
  222. expected = grouped.agg(lambda x: x.dtype)
  223. # make sure raises error
  224. self.assertRaises(AttributeError, getattr, grouped, 'foo')
  225. def test_series_describe_multikey(self):
  226. ts = tm.makeTimeSeries()
  227. grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
  228. result = grouped.describe()
  229. assert_series_equal(result['mean'], grouped.mean())
  230. assert_series_equal(result['std'], grouped.std())
  231. assert_series_equal(result['min'], grouped.min())
  232. def test_series_describe_single(self):
  233. ts = tm.makeTimeSeries()
  234. grouped = ts.groupby(lambda x: x.month)
  235. result = grouped.agg(lambda x: x.describe())
  236. expected = grouped.describe()
  237. assert_frame_equal(result, expected)
  238. def test_series_agg_multikey(self):
  239. ts = tm.makeTimeSeries()
  240. grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
  241. result = grouped.agg(np.sum)
  242. expected = grouped.sum()
  243. assert_series_equal(result, expected)
  244. def test_frame_describe_multikey(self):
  245. grouped = self.tsframe.groupby([lambda x: x.year,
  246. lambda x: x.month])
  247. result = grouped.describe()
  248. for col in self.tsframe:
  249. expected = grouped[col].describe()
  250. assert_frame_equal(result[col].unstack(), expected)
  251. groupedT = self.tsframe.groupby({'A' : 0, 'B' : 0,
  252. 'C' : 1, 'D' : 1}, axis=1)
  253. result = groupedT.describe()
  254. for name, group in groupedT:
  255. assert_frame_equal(result[name], group.describe())
  256. def test_frame_groupby(self):
  257. grouped = self.tsframe.groupby(lambda x: x.weekday())
  258. # aggregate
  259. aggregated = grouped.aggregate(np.mean)
  260. self.assertEqual(len(aggregated), 5)
  261. self.assertEqual(len(aggregated.columns), 4)
  262. # by string
  263. tscopy = self.tsframe.copy()
  264. tscopy['weekday'] = [x.weekday() for x in tscopy.index]
  265. stragged = tscopy.groupby('weekday').aggregate(np.mean)
  266. assert_frame_equal(stragged, aggregated)
  267. # transform
  268. transformed = grouped.transform(lambda x: x - x.mean())
  269. self.assertEqual(len(transformed), 30)
  270. self.assertEqual(len(transformed.columns), 4)
  271. # transform propagate
  272. transformed = grouped.transform(lambda x: x.mean())
  273. for name, group in grouped:
  274. mean = group.mean()
  275. for idx in group.index:
  276. assert_almost_equal(transformed.xs(idx), mean)
  277. # iterate
  278. for weekday, group in grouped:
  279. self.assert_(group.index[0].weekday() == weekday)
  280. # groups / group_indices
  281. groups = grouped.primary.groups
  282. indices = grouped.primary.indices
  283. for k, v in groups.iteritems():
  284. samething = self.tsframe.index.take(indices[k])
  285. self.assert_(np.array_equal(v, samething))
  286. def test_frame_groupby_columns(self):
  287. mapping = {
  288. 'A' : 0, 'B' : 0, 'C' : 1, 'D' : 1
  289. }
  290. grouped = self.tsframe.groupby(mapping, axis=1)
  291. # aggregate
  292. aggregated = grouped.aggregate(np.mean)
  293. self.assertEqual(len(aggregated), len(self.tsframe))
  294. self.assertEqual(len(aggregated.columns), 2)
  295. # transform
  296. tf = lambda x: x - x.mean()
  297. groupedT = self.tsframe.T.groupby(mapping, axis=0)
  298. assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf))
  299. # iterate
  300. for k, v in grouped:
  301. self.assertEqual(len(v.columns), 2)
  302. # # tgroupby
  303. # grouping = {
  304. # 'A' : 0,
  305. # 'B' : 1,
  306. # 'C' : 0,
  307. # 'D' : 1
  308. # }
  309. # grouped = self.frame.tgroupby(grouping.get, np.mean)
  310. # self.assertEqual(len(grouped), len(self.frame.index))
  311. # self.assertEqual(len(grouped.columns), 2)
  312. def test_multi_iter(self):
  313. s = Series(np.arange(6))
  314. k1 = np.array(['a', 'a', 'a', 'b', 'b', 'b'])
  315. k2 = np.array(['1', '2', '1', '2', '1', '2'])
  316. grouped = s.groupby([k1, k2])
  317. iterated = list(grouped)
  318. expected = [('a', '1', s[[0, 2]]),
  319. ('a', '2', s[[1]]),
  320. ('b', '1', s[[4]]),
  321. ('b', '2', s[[3, 5]])]
  322. for i, ((one, two), three) in enumerate(iterated):
  323. e1, e2, e3 = expected[i]
  324. self.assert_(e1 == one)
  325. self.assert_(e2 == two)
  326. assert_series_equal(three, e3)
  327. def test_multi_iter_frame(self):
  328. k1 = np.array(['b', 'b', 'b', 'a', 'a', 'a'])
  329. k2 = np.array(['1', '2', '1', '2', '1', '2'])
  330. df = DataFrame({'v1' : np.random.randn(6),
  331. 'v2' : np.random.randn(6),
  332. 'k1' : k1, 'k2' : k2},
  333. index=['one', 'two', 'three', 'four', 'five', 'six'])
  334. grouped = df.groupby(['k1', 'k2'])
  335. # things get sorted!
  336. iterated = list(grouped)
  337. idx = df.index
  338. expected = [('a', '1', df.ix[idx[[4]]]),
  339. ('a', '2', df.ix[idx[[3, 5]]]),
  340. ('b', '1', df.ix[idx[[0, 2]]]),
  341. ('b', '2', df.ix[idx[[1]]])]
  342. for i, ((one, two), three) in enumerate(iterated):
  343. e1, e2, e3 = expected[i]
  344. self.assert_(e1 == one)
  345. self.assert_(e2 == two)
  346. assert_frame_equal(three, e3)
  347. # don't iterate through groups with no data
  348. df['k1'] = np.array(['b', 'b', 'b', 'a', 'a', 'a'])
  349. df['k2'] = np.array(['1', '1', '1', '2', '2', '2'])
  350. grouped = df.groupby(['k1', 'k2'])
  351. groups = {}
  352. for key, gp in grouped:
  353. groups[key] = gp
  354. self.assertEquals(len(groups), 2)
  355. def test_multi_iter_panel(self):
  356. wp = tm.makePanel()
  357. grouped = wp.groupby([lambda x: x.month, lambda x: x.weekday()],
  358. axis=1)
  359. for (month, wd), group in grouped:
  360. exp_axis = [x for x in wp.major_axis
  361. if x.month == month and x.weekday() == wd]
  362. expected = wp.reindex(major=exp_axis)
  363. assert_panel_equal(group, expected)
  364. def test_multi_func(self):
  365. col1 = self.df['A']
  366. col2 = self.df['B']
  367. grouped = self.df.groupby([col1.get, col2.get])
  368. agged = grouped.mean()
  369. expected = self.df.groupby(['A', 'B']).mean()
  370. assert_frame_equal(agged.ix[:, ['C', 'D']],
  371. expected.ix[:, ['C', 'D']])
  372. # some "groups" with no data
  373. df = DataFrame({'v1' : np.random.randn(6),
  374. 'v2' : np.random.randn(6),
  375. 'k1' : np.array(['b', 'b', 'b', 'a', 'a', 'a']),
  376. 'k2' : np.array(['1', '1', '1', '2', '2', '2'])},
  377. index=['one', 'two', 'three', 'four', 'five', 'six'])
  378. # only verify that it works for now
  379. grouped = df.groupby(['k1', 'k2'])
  380. grouped.agg(np.sum)
  381. def test_multi_key_multiple_functions(self):
  382. grouped = self.df.groupby(['A', 'B'])['C']
  383. agged = grouped.agg([np.mean, np.std])
  384. expected = DataFrame({'mean' : grouped.agg(np.mean),
  385. 'std' : grouped.agg(np.std)})
  386. assert_frame_equal(agged, expected)
  387. def test_groupby_multiple_columns(self):
  388. data = self.df
  389. grouped = data.groupby(['A', 'B'])
  390. def _check_op(op):
  391. result1 = op(grouped)
  392. expected = defaultdict(dict)
  393. for n1, gp1 in data.groupby('A'):
  394. for n2, gp2 in gp1.groupby('B'):
  395. expected[n1][n2] = op(gp2.ix[:, ['C', 'D']])
  396. expected = dict((k, DataFrame(v)) for k, v in expected.iteritems())
  397. expected = Panel.fromDict(expected).swapaxes(0, 1)
  398. # a little bit crude
  399. for col in ['C', 'D']:
  400. result_col = op(grouped[col])
  401. exp = expected[col]
  402. pivoted = result1[col].unstack()
  403. pivoted2 = result_col.unstack()
  404. assert_frame_equal(pivoted.reindex_like(exp), exp)
  405. assert_frame_equal(pivoted2.reindex_like(exp), exp)
  406. _check_op(lambda x: x.sum())
  407. _check_op(lambda x: x.mean())
  408. # test single series works the same
  409. result = data['C'].groupby([data['A'], data['B']]).mean()
  410. expected = data.groupby(['A', 'B']).mean()['C']
  411. assert_series_equal(result, expected)
  412. def test_groupby_as_index_agg(self):
  413. grouped = self.df.groupby('A', as_index=False)
  414. # single-key
  415. result = grouped.agg(np.mean)
  416. expected = grouped.mean()
  417. assert_frame_equal(result, expected)
  418. result2 = grouped.agg({'C' : np.mean, 'D' : np.sum})
  419. expected2 = grouped.mean()
  420. expected2['D'] = grouped.sum()['D']
  421. assert_frame_equal(result2, expected2)
  422. # multi-key
  423. grouped = self.df.groupby(['A', 'B'], as_index=False)
  424. result = grouped.agg(np.mean)
  425. expected = grouped.mean()
  426. assert_frame_equal(result, expected)
  427. result2 = grouped.agg({'C' : np.mean, 'D' : np.sum})
  428. expected2 = grouped.mean()
  429. expected2['D'] = grouped.sum()['D']
  430. assert_frame_equal(result2, expected2)
  431. def test_groupby_as_index_cython(self):
  432. data = self.df
  433. # single-key
  434. grouped = data.groupby('A', as_index=False)
  435. result = grouped.mean()
  436. expected = data.groupby(['A']).mean()
  437. expected.insert(0, 'A', expected.index)
  438. expected.index = np.arange(len(expected))
  439. assert_frame_equal(result, expected)
  440. # multi-key
  441. grouped = data.groupby(['A', 'B'], as_index=False)
  442. result = grouped.mean()
  443. expected = data.groupby(['A', 'B']).mean()
  444. arrays = zip(*expected.index.get_tuple_index())
  445. expected.insert(0, 'A', arrays[0])
  446. expected.insert(1, 'B', arrays[1])
  447. expected.index = np.arange(len(expected))
  448. assert_frame_equal(result, expected)
  449. def test_groupby_as_index_corner(self):
  450. self.assertRaises(TypeError, self.ts.groupby,
  451. lambda x: x.weekday(), as_index=False)
  452. self.assertRaises(ValueError, self.df.groupby,
  453. lambda x: x.lower(), as_index=False, axis=1)
  454. def test_groupby_multiple_key(self):
  455. df = tm.makeTimeDataFrame()
  456. grouped = df.groupby([lambda x: x.year,
  457. lambda x: x.month,
  458. lambda x: x.day])
  459. agged = grouped.sum()
  460. assert_almost_equal(df.values, agged.values)
  461. grouped = df.T.groupby([lambda x: x.year,
  462. lambda x: x.month,
  463. lambda x: x.day], axis=1)
  464. agged = grouped.agg(lambda x: x.sum(1))
  465. self.assert_(agged.index.equals(df.columns))
  466. assert_almost_equal(df.T.values, agged.values)
  467. agged = grouped.agg(lambda x: x.sum(1))
  468. assert_almost_equal(df.T.values, agged.values)
  469. def test_groupby_multi_corner(self):
  470. # test that having an all-NA column doesn't mess you up
  471. df = self.df.copy()
  472. df['bad'] = np.nan
  473. agged = df.groupby(['A', 'B']).mean()
  474. expected = self.df.groupby(['A', 'B']).mean()
  475. expected['bad'] = np.nan
  476. assert_frame_equal(agged, expected)
  477. def test_omit_nuisance(self):
  478. grouped = self.df.groupby('A')
  479. result = grouped.mean()
  480. expected = self.df.ix[:, ['A', 'C', 'D']].groupby('A').mean()
  481. assert_frame_equal(result, expected)
  482. df = self.df.ix[:, ['A', 'C', 'D']]
  483. df['E'] = datetime.now()
  484. grouped = df.groupby('A')
  485. result = grouped.agg(np.sum)
  486. expected = grouped.sum()
  487. assert_frame_equal(result, expected)
  488. # won't work with axis = 1
  489. grouped = df.groupby({'A' : 0, 'C' : 0, 'D' : 1, 'E' : 1}, axis=1)
  490. result = self.assertRaises(TypeError, grouped.agg, np.sum)
  491. def test_nonsense_func(self):
  492. df = DataFrame([0])
  493. self.assertRaises(Exception, df.groupby, lambda x: x + 'foo')
  494. def test_cythonized_aggers(self):
  495. data = {'A' : [0, 0, 0, 0, 1, 1, 1, 1, 1, 1., nan, nan],
  496. 'B' : ['A', 'B'] * 6,
  497. 'C' : np.random.randn(12)}
  498. df = DataFrame(data)
  499. df['C'][2:10:2] = nan
  500. def _testit(op):
  501. # single column
  502. grouped = df.drop(['B'], axis=1).groupby('A')
  503. exp = {}
  504. for cat, group in grouped:
  505. exp[cat] = op(group['C'])
  506. exp = DataFrame({'C' : exp})
  507. result = op(grouped)
  508. assert_frame_equal(result, exp)
  509. # multiple columns
  510. grouped = df.groupby(['A', 'B'])
  511. expd = {}
  512. for (cat1, cat2), group in grouped:
  513. expd.setdefault(cat1, {})[cat2] = op(group['C'])
  514. exp = DataFrame(expd).T.stack(dropna=False)
  515. result = op(grouped)['C']
  516. assert_series_equal(result, exp)
  517. _testit(lambda x: x.sum())
  518. _testit(lambda x: x.mean())
  519. def test_grouping_attrs(self):
  520. deleveled = self.mframe.delevel()
  521. grouped = deleveled.groupby(['first', 'second'])
  522. for i, ping in enumerate(grouped.groupings):
  523. the_counts = self.mframe.groupby(level=i).count()['A']
  524. assert_almost_equal(ping.counts, the_counts)
  525. def test_groupby_level(self):
  526. frame = self.mframe
  527. deleveled = frame.delevel()
  528. result0 = frame.groupby(level=0).sum()
  529. result1 = frame.groupby(level=1).sum()
  530. expected0 = frame.groupby(deleveled['first']).sum()
  531. expected1 = frame.groupby(deleveled['second']).sum()
  532. assert_frame_equal(result0, expected0)
  533. assert_frame_equal(result1, expected1)
  534. # groupby level name
  535. result0 = frame.groupby(level='first').sum()
  536. result1 = frame.groupby(level='second').sum()
  537. assert_frame_equal(result0, expected0)
  538. assert_frame_equal(result1, expected1)
  539. # axis=1
  540. result0 = frame.T.groupby(level=0, axis=1).sum()
  541. result1 = frame.T.groupby(level=1, axis=1).sum()
  542. assert_frame_equal(result0, expected0.T)
  543. assert_frame_equal(result1, expected1.T)
  544. # raise exception for non-MultiIndex
  545. self.assertRaises(ValueError, self.df.groupby, level=0)
  546. def test_groupby_level_mapper(self):
  547. frame = self.mframe
  548. deleveled = frame.delevel()
  549. mapper0 = {'foo' : 0, 'bar' : 0,
  550. 'baz' : 1, 'qux' : 1}
  551. mapper1 = {'one' : 0, 'two' : 0, 'three' : 1}
  552. result0 = frame.groupby(mapper0, level=0).sum()
  553. result1 = frame.groupby(mapper1, level=1).sum()
  554. mapped_level0 = np.array([mapper0.get(x) for x in deleveled['first']])
  555. mapped_level1 = np.array([mapper1.get(x) for x in deleveled['second']])
  556. expected0 = frame.groupby(mapped_level0).sum()
  557. expected1 = frame.groupby(mapped_level1).sum()
  558. assert_frame_equal(result0, expected0)
  559. assert_frame_equal(result1, expected1)
  560. def test_cython_fail_agg(self):
  561. dr = DateRange('1/1/2000', periods=50)
  562. ts = Series(['A', 'B', 'C', 'D', 'E'] * 10, index=dr)
  563. grouped = ts.groupby(lambda x: x.month)
  564. summed = grouped.sum()
  565. expected = grouped.agg(np.sum)
  566. assert_series_equal(summed, expected)
  567. def test_apply_series_to_frame(self):
  568. def f(piece):
  569. return DataFrame({'value' : piece,
  570. 'demeaned' : piece - piece.mean(),
  571. 'logged' : np.log(piece)})
  572. dr = DateRange('1/1/2000', periods=100)
  573. ts = Series(np.random.randn(100), index=dr)
  574. grouped = ts.groupby(lambda x: x.month)
  575. result = grouped.apply(f)
  576. self.assert_(isinstance(result, DataFrame))
  577. self.assert_(result.index.equals(ts.index))
  578. def test_apply_frame_to_series(self):
  579. grouped = self.df.groupby(['A', 'B'])
  580. result = grouped.apply(len)
  581. expected = grouped.count()['C']
  582. assert_series_equal(result, expected)
  583. def test_apply_transform(self):
  584. grouped = self.ts.groupby(lambda x: x.month)
  585. result = grouped.apply(lambda x: x * 2)
  586. expected = grouped.transform(lambda x: x * 2)
  587. assert_series_equal(result, expected)
  588. def test_apply_multikey_corner(self):
  589. grouped = self.tsframe.groupby([lambda x: x.year,
  590. lambda x: x.month])
  591. def f(group):
  592. return group.sort('A')[-5:]
  593. result = grouped.apply(f)
  594. for key, group in grouped:
  595. assert_frame_equal(result.ix[key], f(group))
  596. def test_groupby_series_indexed_differently(self):
  597. s1 = Series([5.0,-9.0,4.0,100.,-5.,55.,6.7],
  598. index=Index(['a','b','c','d','e','f','g']))
  599. s2 = Series([1.0,1.0,4.0,5.0,5.0,7.0],
  600. index=Index(['a','b','d','f','g','h']))
  601. grouped = s1.groupby(s2)
  602. agged = grouped.mean()
  603. exp = s1.groupby(s2.reindex(s1.index).get).mean()
  604. assert_series_equal(agged, exp)
  605. def test_groupby_with_hier_columns(self):
  606. tuples = zip(*[['bar', 'bar', 'baz', 'baz',
  607. 'foo', 'foo', 'qux', 'qux'],
  608. ['one', 'two', 'one', 'two',
  609. 'one', 'two', 'one', 'two']])
  610. index = MultiIndex.from_tuples(tuples)
  611. columns = MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
  612. ('B', 'cat'), ('A', 'dog')])
  613. df = DataFrame(np.random.randn(8, 4), index=index,
  614. columns=columns)
  615. result = df.groupby(level=0).mean()
  616. self.assert_(result.columns.equals(columns))
  617. result = df.groupby(level=0, axis=1).mean()
  618. self.assert_(result.index.equals(df.index))
  619. result = df.groupby(level=0).agg(np.mean)
  620. self.assert_(result.columns.equals(columns))
  621. result = df.groupby(level=0).apply(lambda x: x.mean())
  622. self.assert_(result.columns.equals(columns))
  623. result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1))
  624. self.assert_(result.columns.equals(Index(['A', 'B'])))
  625. self.assert_(result.index.equals(df.index))
  626. # add a nuisance column
  627. sorted_columns, _ = columns.sortlevel(0)
  628. df['A', 'foo'] = 'bar'
  629. result = df.groupby(level=0).mean()
  630. self.assert_(result.columns.equals(sorted_columns))
  631. def test_pass_args_kwargs(self):
  632. from scipy.stats import scoreatpercentile
  633. def f(x, q=None):
  634. return scoreatpercentile(x, q)
  635. g = lambda x: scoreatpercentile(x, 80)
  636. # Series
  637. ts_grouped = self.ts.groupby(lambda x: x.month)
  638. agg_result = ts_grouped.agg(scoreatpercentile, 80)
  639. apply_result = ts_grouped.apply(scoreatpercentile, 80)
  640. trans_result = ts_grouped.transform(scoreatpercentile, 80)
  641. agg_expected = ts_grouped.quantile(.8)
  642. trans_expected = ts_grouped.transform(g)
  643. assert_series_equal(apply_result, agg_expected)
  644. assert_series_equal(agg_result, agg_expected)
  645. assert_series_equal(trans_result, trans_expected)
  646. agg_result = ts_grouped.agg(f, q=80)
  647. apply_result = ts_grouped.apply(f, q=80)
  648. trans_result = ts_grouped.transform(f, q=80)
  649. assert_series_equal(agg_result, agg_expected)
  650. assert_series_equal(apply_result, agg_expected)
  651. assert_series_equal(trans_result, trans_expected)
  652. # DataFrame
  653. df_grouped = self.tsframe.groupby(lambda x: x.month)
  654. agg_result = df_grouped.agg(scoreatpercentile, 80)
  655. apply_result = df_grouped.apply(DataFrame.quantile, .8)
  656. expected = df_grouped.quantile(.8)
  657. assert_frame_equal(apply_result, expected)
  658. assert_frame_equal(agg_result, expected)
  659. agg_result = df_grouped.agg(f, q=80)
  660. apply_result = df_grouped.apply(DataFrame.quantile, q=.8)
  661. assert_frame_equal(agg_result, expected)
  662. assert_frame_equal(apply_result, expected)
  663. def test_cython_na_bug(self):
  664. values = np.random.randn(10)
  665. shape = (5, 5)
  666. label_list = [np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2], dtype=np.int32),
  667. np.array([1, 2, 3, 4, 0, 1, 2, 3, 3, 4], dtype=np.int32)]
  668. lib.group_aggregate(values, label_list, shape)
  669. def test_size(self):
  670. grouped = self.df.groupby(['A', 'B'])
  671. result = grouped.size()
  672. for key, group in grouped:
  673. self.assertEquals(result[key], len(group))
  674. grouped = self.df.groupby('A')
  675. result = grouped.size()
  676. for key, group in grouped:
  677. self.assertEquals(result[key], len(group))
  678. grouped = self.df.groupby('B')
  679. result = grouped.size()
  680. for key, group in grouped:
  681. self.assertEquals(result[key], len(group))
  682. def test_grouping_ndarray(self):
  683. grouped = self.df.groupby(self.df['A'].values)
  684. result = grouped.sum()
  685. expected = self.df.groupby('A').sum()
  686. assert_frame_equal(result, expected)
  687. def test_apply_typecast_fail(self):
  688. df = DataFrame({'d' : [1.,1.,1.,2.,2.,2.],
  689. 'c' : np.tile(['a','b','c'], 2),
  690. 'v' : np.arange(1., 7.)})
  691. def f(group):
  692. v = group['v']
  693. group['v2'] = (v - v.min()) / (v.max() - v.min())
  694. return group
  695. result = df.groupby('d').apply(f)
  696. expected = df.copy()
  697. expected['v2'] = np.tile([0., 0.5, 1], 2)
  698. assert_frame_equal(result, expected)
  699. def test_apply_multiindex_fail(self):
  700. index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1],
  701. [1, 2, 3, 1, 2, 3]])
  702. df = DataFrame({'d' : [1.,1.,1.,2.,2.,2.],
  703. 'c' : np.tile(['a','b','c'], 2),
  704. 'v' : np.arange(1., 7.)}, index=index)
  705. def f(group):
  706. v = group['v']
  707. group['v2'] = (v - v.min()) / (v.max() - v.min())
  708. return group
  709. result = df.groupby('d').apply(f)
  710. expected = df.copy()
  711. expected['v2'] = np.tile([0., 0.5, 1], 2)
  712. assert_frame_equal(result, expected)
  713. class TestPanelGroupBy(unittest.TestCase):
  714. def setUp(self):
  715. self.panel = tm.makePanel()
  716. tm.add_nans(self.panel)
  717. def test_groupby(self):
  718. grouped = self.panel.groupby({'ItemA' : 0, 'ItemB' : 0, 'ItemC' : 1},
  719. axis='items')
  720. agged = grouped.agg(np.mean)
  721. self.assert_(np.array_equal(agged.items, [0, 1]))
  722. grouped = self.panel.groupby(lambda x: x.month, axis='major')
  723. agged = grouped.agg(np.mean)
  724. self.assert_(np.array_equal(agged.major_axis, [1, 2]))
  725. grouped = self.panel.groupby({'A' : 0, 'B' : 0, 'C' : 1, 'D' : 1},
  726. axis='minor')
  727. agged = grouped.agg(np.mean)
  728. self.assert_(np.array_equal(agged.minor_axis, [0, 1]))
  729. class TestAggregate(unittest.TestCase):
  730. setUp = commonSetUp
  731. class TestTransform(unittest.TestCase):
  732. setUp = commonSetUp
  733. if __name__ == '__main__':
  734. import nose
  735. nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'],
  736. exit=False)