/branches/full-calibration/flight/Libraries/CoordinateConversions.c
https://github.com/CorvusCorax/my_OpenPilot_mods · C · 217 lines · 141 code · 32 blank · 44 comment · 4 complexity · 02b2a198137929f22d79a082027210b3 MD5 · raw file
- /**
- ******************************************************************************
- *
- * @file CoordinateConversions.c
- * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
- * @brief General conversions with different coordinate systems.
- * - all angles in deg
- * - distances in meters
- * - altitude above WGS-84 elipsoid
- *
- * @see The GNU Public License (GPL) Version 3
- *
- *****************************************************************************/
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
- #include <math.h>
- #include <stdint.h>
- #include "CoordinateConversions.h"
- #define RAD2DEG (180.0/M_PI)
- #define DEG2RAD (M_PI/180.0)
- // ****** convert Lat,Lon,Alt to ECEF ************
- void LLA2ECEF(double LLA[3], double ECEF[3])
- {
- const double a = 6378137.0; // Equatorial Radius
- const double e = 8.1819190842622e-2; // Eccentricity
- double sinLat, sinLon, cosLat, cosLon;
- double N;
- sinLat = sin(DEG2RAD * LLA[0]);
- sinLon = sin(DEG2RAD * LLA[1]);
- cosLat = cos(DEG2RAD * LLA[0]);
- cosLon = cos(DEG2RAD * LLA[1]);
- N = a / sqrt(1.0 - e * e * sinLat * sinLat); //prime vertical radius of curvature
- ECEF[0] = (N + LLA[2]) * cosLat * cosLon;
- ECEF[1] = (N + LLA[2]) * cosLat * sinLon;
- ECEF[2] = ((1 - e * e) * N + LLA[2]) * sinLat;
- }
- // ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
- uint16_t ECEF2LLA(double ECEF[3], double LLA[3])
- {
- /**
- * LLA parameter is used to prime the iteration.
- * A position within 1 meter of the specified LLA
- * will be calculated within at most 3 iterations.
- * If unknown: Call with any valid LLA coordinate
- * will compute within at most 5 iterations.
- * Suggestion: [0,0,0]
- **/
- const double a = 6378137.0; // Equatorial Radius
- const double e = 8.1819190842622e-2; // Eccentricity
- double x = ECEF[0], y = ECEF[1], z = ECEF[2];
- double Lat, N, NplusH, delta, esLat;
- uint16_t iter;
- #define MAX_ITER 10 // should not take more than 5 for valid coordinates
- #define ACCURACY 1.0e-11 // used to be e-14, but we don't need sub micrometer exact calculations
- LLA[1] = RAD2DEG * atan2(y, x);
- Lat = DEG2RAD * LLA[0];
- esLat = e * sin(Lat);
- N = a / sqrt(1 - esLat * esLat);
- NplusH = N + LLA[2];
- delta = 1;
- iter = 0;
- while (((delta > ACCURACY) || (delta < -ACCURACY))
- && (iter < MAX_ITER)) {
- delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH))));
- Lat = Lat - delta;
- esLat = e * sin(Lat);
- N = a / sqrt(1 - esLat * esLat);
- NplusH = sqrt(x * x + y * y) / cos(Lat);
- iter += 1;
- }
- LLA[0] = RAD2DEG * Lat;
- LLA[2] = NplusH - N;
- return (iter < MAX_ITER);
- }
- // ****** find ECEF to NED rotation matrix ********
- void RneFromLLA(double LLA[3], float Rne[3][3])
- {
- float sinLat, sinLon, cosLat, cosLon;
- sinLat = (float)sin(DEG2RAD * LLA[0]);
- sinLon = (float)sin(DEG2RAD * LLA[1]);
- cosLat = (float)cos(DEG2RAD * LLA[0]);
- cosLon = (float)cos(DEG2RAD * LLA[1]);
- Rne[0][0] = -sinLat * cosLon;
- Rne[0][1] = -sinLat * sinLon;
- Rne[0][2] = cosLat;
- Rne[1][0] = -sinLon;
- Rne[1][1] = cosLon;
- Rne[1][2] = 0;
- Rne[2][0] = -cosLat * cosLon;
- Rne[2][1] = -cosLat * sinLon;
- Rne[2][2] = -sinLat;
- }
- // ****** find roll, pitch, yaw from quaternion ********
- void Quaternion2RPY(float q[4], float rpy[3])
- {
- float R13, R11, R12, R23, R33;
- float q0s = q[0] * q[0];
- float q1s = q[1] * q[1];
- float q2s = q[2] * q[2];
- float q3s = q[3] * q[3];
- R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
- R11 = q0s + q1s - q2s - q3s;
- R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
- R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
- R33 = q0s - q1s - q2s + q3s;
- rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2
- rpy[2] = RAD2DEG * atan2f(R12, R11);
- rpy[0] = RAD2DEG * atan2f(R23, R33);
- }
- // ****** find quaternion from roll, pitch, yaw ********
- void RPY2Quaternion(float rpy[3], float q[4])
- {
- float phi, theta, psi;
- float cphi, sphi, ctheta, stheta, cpsi, spsi;
- phi = DEG2RAD * rpy[0] / 2;
- theta = DEG2RAD * rpy[1] / 2;
- psi = DEG2RAD * rpy[2] / 2;
- cphi = cosf(phi);
- sphi = sinf(phi);
- ctheta = cosf(theta);
- stheta = sinf(theta);
- cpsi = cosf(psi);
- spsi = sinf(psi);
- q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
- q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
- q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
- q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;
- if (q[0] < 0) { // q0 always positive for uniqueness
- q[0] = -q[0];
- q[1] = -q[1];
- q[2] = -q[2];
- q[3] = -q[3];
- }
- }
- //** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
- void Quaternion2R(float q[4], float Rbe[3][3])
- {
- float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];
- Rbe[0][0] = q0s + q1s - q2s - q3s;
- Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
- Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
- Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
- Rbe[1][1] = q0s - q1s + q2s - q3s;
- Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
- Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
- Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
- Rbe[2][2] = q0s - q1s - q2s + q3s;
- }
- // ****** Express LLA in a local NED Base Frame ********
- void LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
- {
- double ECEF[3];
- float diff[3];
- LLA2ECEF(LLA, ECEF);
- diff[0] = (float)(ECEF[0] - BaseECEF[0]);
- diff[1] = (float)(ECEF[1] - BaseECEF[1]);
- diff[2] = (float)(ECEF[2] - BaseECEF[2]);
- NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
- NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
- NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
- }
- // ****** Express ECEF in a local NED Base Frame ********
- void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3])
- {
- float diff[3];
- diff[0] = (float)(ECEF[0] - BaseECEF[0]);
- diff[1] = (float)(ECEF[1] - BaseECEF[1]);
- diff[2] = (float)(ECEF[2] - BaseECEF[2]);
- NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
- NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
- NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
- }