/pandas/tests/arrays/categorical/test_indexing.py
Python | 289 lines | 223 code | 43 blank | 23 comment | 9 complexity | ce9068d273194a3825f5772ade378d4e MD5 | raw file
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import Categorical, CategoricalIndex, Index, PeriodIndex, Series
- import pandas._testing as tm
- import pandas.core.common as com
- from pandas.tests.arrays.categorical.common import TestCategorical
- class TestCategoricalIndexingWithFactor(TestCategorical):
- def test_getitem(self):
- assert self.factor[0] == "a"
- assert self.factor[-1] == "c"
- subf = self.factor[[0, 1, 2]]
- tm.assert_numpy_array_equal(subf._codes, np.array([0, 1, 1], dtype=np.int8))
- subf = self.factor[np.asarray(self.factor) == "c"]
- tm.assert_numpy_array_equal(subf._codes, np.array([2, 2, 2], dtype=np.int8))
- def test_setitem(self):
- # int/positional
- c = self.factor.copy()
- c[0] = "b"
- assert c[0] == "b"
- c[-1] = "a"
- assert c[-1] == "a"
- # boolean
- c = self.factor.copy()
- indexer = np.zeros(len(c), dtype="bool")
- indexer[0] = True
- indexer[-1] = True
- c[indexer] = "c"
- expected = Categorical(["c", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
- tm.assert_categorical_equal(c, expected)
- @pytest.mark.parametrize(
- "other",
- [pd.Categorical(["b", "a"]), pd.Categorical(["b", "a"], categories=["b", "a"])],
- )
- def test_setitem_same_but_unordered(self, other):
- # GH-24142
- target = pd.Categorical(["a", "b"], categories=["a", "b"])
- mask = np.array([True, False])
- target[mask] = other[mask]
- expected = pd.Categorical(["b", "b"], categories=["a", "b"])
- tm.assert_categorical_equal(target, expected)
- @pytest.mark.parametrize(
- "other",
- [
- pd.Categorical(["b", "a"], categories=["b", "a", "c"]),
- pd.Categorical(["b", "a"], categories=["a", "b", "c"]),
- pd.Categorical(["a", "a"], categories=["a"]),
- pd.Categorical(["b", "b"], categories=["b"]),
- ],
- )
- def test_setitem_different_unordered_raises(self, other):
- # GH-24142
- target = pd.Categorical(["a", "b"], categories=["a", "b"])
- mask = np.array([True, False])
- msg = "Cannot set a Categorical with another, without identical categories"
- with pytest.raises(ValueError, match=msg):
- target[mask] = other[mask]
- @pytest.mark.parametrize(
- "other",
- [
- pd.Categorical(["b", "a"]),
- pd.Categorical(["b", "a"], categories=["b", "a"], ordered=True),
- pd.Categorical(["b", "a"], categories=["a", "b", "c"], ordered=True),
- ],
- )
- def test_setitem_same_ordered_rasies(self, other):
- # Gh-24142
- target = pd.Categorical(["a", "b"], categories=["a", "b"], ordered=True)
- mask = np.array([True, False])
- msg = "Cannot set a Categorical with another, without identical categories"
- with pytest.raises(ValueError, match=msg):
- target[mask] = other[mask]
- class TestCategoricalIndexing:
- def test_getitem_slice(self):
- cat = Categorical(["a", "b", "c", "d", "a", "b", "c"])
- sliced = cat[3]
- assert sliced == "d"
- sliced = cat[3:5]
- expected = Categorical(["d", "a"], categories=["a", "b", "c", "d"])
- tm.assert_categorical_equal(sliced, expected)
- def test_getitem_listlike(self):
- # GH 9469
- # properly coerce the input indexers
- np.random.seed(1)
- c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8))
- result = c.codes[np.array([100000]).astype(np.int64)]
- expected = c[np.array([100000]).astype(np.int64)].codes
- tm.assert_numpy_array_equal(result, expected)
- def test_periodindex(self):
- idx1 = PeriodIndex(
- ["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"], freq="M"
- )
- cat1 = Categorical(idx1)
- str(cat1)
- exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.int8)
- exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
- tm.assert_numpy_array_equal(cat1._codes, exp_arr)
- tm.assert_index_equal(cat1.categories, exp_idx)
- idx2 = PeriodIndex(
- ["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"], freq="M"
- )
- cat2 = Categorical(idx2, ordered=True)
- str(cat2)
- exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.int8)
- exp_idx2 = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
- tm.assert_numpy_array_equal(cat2._codes, exp_arr)
- tm.assert_index_equal(cat2.categories, exp_idx2)
- idx3 = PeriodIndex(
- [
- "2013-12",
- "2013-11",
- "2013-10",
- "2013-09",
- "2013-08",
- "2013-07",
- "2013-05",
- ],
- freq="M",
- )
- cat3 = Categorical(idx3, ordered=True)
- exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype=np.int8)
- exp_idx = PeriodIndex(
- [
- "2013-05",
- "2013-07",
- "2013-08",
- "2013-09",
- "2013-10",
- "2013-11",
- "2013-12",
- ],
- freq="M",
- )
- tm.assert_numpy_array_equal(cat3._codes, exp_arr)
- tm.assert_index_equal(cat3.categories, exp_idx)
- def test_categories_assignments(self):
- s = Categorical(["a", "b", "c", "a"])
- exp = np.array([1, 2, 3, 1], dtype=np.int64)
- s.categories = [1, 2, 3]
- tm.assert_numpy_array_equal(s.__array__(), exp)
- tm.assert_index_equal(s.categories, Index([1, 2, 3]))
- @pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]])
- def test_categories_assignments_wrong_length_raises(self, new_categories):
- cat = Categorical(["a", "b", "c", "a"])
- msg = (
- "new categories need to have the same number of items "
- "as the old categories!"
- )
- with pytest.raises(ValueError, match=msg):
- cat.categories = new_categories
- # Combinations of sorted/unique:
- @pytest.mark.parametrize(
- "idx_values", [[1, 2, 3, 4], [1, 3, 2, 4], [1, 3, 3, 4], [1, 2, 2, 4]]
- )
- # Combinations of missing/unique
- @pytest.mark.parametrize("key_values", [[1, 2], [1, 5], [1, 1], [5, 5]])
- @pytest.mark.parametrize("key_class", [Categorical, CategoricalIndex])
- def test_get_indexer_non_unique(self, idx_values, key_values, key_class):
- # GH 21448
- key = key_class(key_values, categories=range(1, 5))
- # Test for flat index and CategoricalIndex with same/different cats:
- for dtype in None, "category", key.dtype:
- idx = Index(idx_values, dtype=dtype)
- expected, exp_miss = idx.get_indexer_non_unique(key_values)
- result, res_miss = idx.get_indexer_non_unique(key)
- tm.assert_numpy_array_equal(expected, result)
- tm.assert_numpy_array_equal(exp_miss, res_miss)
- def test_where_unobserved_nan(self):
- ser = pd.Series(pd.Categorical(["a", "b"]))
- result = ser.where([True, False])
- expected = pd.Series(pd.Categorical(["a", None], categories=["a", "b"]))
- tm.assert_series_equal(result, expected)
- # all NA
- ser = pd.Series(pd.Categorical(["a", "b"]))
- result = ser.where([False, False])
- expected = pd.Series(pd.Categorical([None, None], categories=["a", "b"]))
- tm.assert_series_equal(result, expected)
- def test_where_unobserved_categories(self):
- ser = pd.Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
- result = ser.where([True, True, False], other="b")
- expected = pd.Series(
- Categorical(["a", "b", "b"], categories=ser.cat.categories)
- )
- tm.assert_series_equal(result, expected)
- def test_where_other_categorical(self):
- ser = pd.Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
- other = Categorical(["b", "c", "a"], categories=["a", "c", "b", "d"])
- result = ser.where([True, False, True], other)
- expected = pd.Series(Categorical(["a", "c", "c"], dtype=ser.dtype))
- tm.assert_series_equal(result, expected)
- def test_where_new_category_raises(self):
- ser = pd.Series(Categorical(["a", "b", "c"]))
- msg = "Cannot setitem on a Categorical with a new category"
- with pytest.raises(ValueError, match=msg):
- ser.where([True, False, True], "d")
- def test_where_ordered_differs_rasies(self):
- ser = pd.Series(
- Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"], ordered=True)
- )
- other = Categorical(
- ["b", "c", "a"], categories=["a", "c", "b", "d"], ordered=True
- )
- with pytest.raises(ValueError, match="without identical categories"):
- ser.where([True, False, True], other)
- @pytest.mark.parametrize("index", [True, False])
- def test_mask_with_boolean(index):
- s = Series(range(3))
- idx = Categorical([True, False, True])
- if index:
- idx = CategoricalIndex(idx)
- assert com.is_bool_indexer(idx)
- result = s[idx]
- expected = s[idx.astype("object")]
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("index", [True, False])
- def test_mask_with_boolean_na_treated_as_false(index):
- # https://github.com/pandas-dev/pandas/issues/31503
- s = Series(range(3))
- idx = Categorical([True, False, None])
- if index:
- idx = CategoricalIndex(idx)
- result = s[idx]
- expected = s[idx.fillna(False)]
- tm.assert_series_equal(result, expected)
- @pytest.fixture
- def non_coercible_categorical(monkeypatch):
- """
- Monkeypatch Categorical.__array__ to ensure no implicit conversion.
- Raises
- ------
- ValueError
- When Categorical.__array__ is called.
- """
- # TODO(Categorical): identify other places where this may be
- # useful and move to a conftest.py
- def array(self, dtype=None):
- raise ValueError("I cannot be converted.")
- with monkeypatch.context() as m:
- m.setattr(Categorical, "__array__", array)
- yield
- def test_series_at(non_coercible_categorical):
- arr = Categorical(["a", "b", "c"])
- ser = Series(arr)
- result = ser.at[0]
- assert result == "a"