PageRenderTime 68ms CodeModel.GetById 33ms RepoModel.GetById 0ms app.codeStats 1ms

/examples/cholesky/cholesky_tag.c

https://bitbucket.org/jeromerobert/starpu
C | 405 lines | 267 code | 86 blank | 52 comment | 44 complexity | aa938de3c3d807430713b131e9ccb0ab MD5 | raw file
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2017 Université de Bordeaux
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012, 2013, 2017 CNRS
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*
  19. * This version of the Cholesky factorization uses explicit dependency
  20. * declaration through dependency tags.
  21. * It also uses data partitioning to split the matrix into submatrices
  22. */
  23. #include "cholesky.h"
  24. #include <starpu_perfmodel.h>
  25. #if defined(STARPU_USE_CUDA) && defined(STARPU_HAVE_MAGMA)
  26. #include "magma.h"
  27. #endif
  28. /*
  29. * Some useful functions
  30. */
  31. static struct starpu_task *create_task(starpu_tag_t id)
  32. {
  33. struct starpu_task *task = starpu_task_create();
  34. task->cl_arg = NULL;
  35. task->use_tag = 1;
  36. task->tag_id = id;
  37. return task;
  38. }
  39. /*
  40. * Create the codelets
  41. */
  42. static struct starpu_task * create_task_11(starpu_data_handle_t dataA, unsigned k)
  43. {
  44. /* FPRINTF(stdout, "task 11 k = %d TAG = %llx\n", k, (TAG11(k))); */
  45. struct starpu_task *task = create_task(TAG11(k));
  46. task->cl = &cl11;
  47. /* which sub-data is manipulated ? */
  48. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  49. /* this is an important task */
  50. if (!noprio_p)
  51. task->priority = STARPU_MAX_PRIO;
  52. /* enforce dependencies ... */
  53. if (k > 0)
  54. {
  55. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  56. }
  57. int n = starpu_matrix_get_nx(task->handles[0]);
  58. task->flops = FLOPS_SPOTRF(n);
  59. return task;
  60. }
  61. static void create_task_21(starpu_data_handle_t dataA, unsigned k, unsigned j)
  62. {
  63. struct starpu_task *task = create_task(TAG21(k, j));
  64. task->cl = &cl21;
  65. /* which sub-data is manipulated ? */
  66. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  67. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  68. if (!noprio_p && (j == k+1))
  69. {
  70. task->priority = STARPU_MAX_PRIO;
  71. }
  72. /* enforce dependencies ... */
  73. if (k > 0)
  74. {
  75. starpu_tag_declare_deps(TAG21(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  76. }
  77. else
  78. {
  79. starpu_tag_declare_deps(TAG21(k, j), 1, TAG11(k));
  80. }
  81. int n = starpu_matrix_get_nx(task->handles[0]);
  82. task->flops = FLOPS_STRSM(n, n);
  83. int ret = starpu_task_submit(task);
  84. if (STARPU_UNLIKELY(ret == -ENODEV))
  85. {
  86. FPRINTF(stderr, "No worker may execute this task\n");
  87. exit(0);
  88. }
  89. }
  90. static void create_task_22(starpu_data_handle_t dataA, unsigned k, unsigned i, unsigned j)
  91. {
  92. /* FPRINTF(stdout, "task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j)); */
  93. struct starpu_task *task = create_task(TAG22(k, i, j));
  94. task->cl = &cl22;
  95. /* which sub-data is manipulated ? */
  96. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, i);
  97. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  98. task->handles[2] = starpu_data_get_sub_data(dataA, 2, i, j);
  99. if (!noprio_p && (i == k + 1) && (j == k +1) )
  100. {
  101. task->priority = STARPU_MAX_PRIO;
  102. }
  103. /* enforce dependencies ... */
  104. if (k > 0)
  105. {
  106. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG21(k, i), TAG21(k, j));
  107. }
  108. else
  109. {
  110. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG21(k, i), TAG21(k, j));
  111. }
  112. int n = starpu_matrix_get_nx(task->handles[0]);
  113. task->flops = FLOPS_SGEMM(n, n, n);
  114. int ret = starpu_task_submit(task);
  115. if (STARPU_UNLIKELY(ret == -ENODEV))
  116. {
  117. FPRINTF(stderr, "No worker may execute this task\n");
  118. exit(0);
  119. }
  120. }
  121. /*
  122. * code to bootstrap the factorization
  123. * and construct the DAG
  124. */
  125. static void _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  126. {
  127. double start;
  128. double end;
  129. struct starpu_task *entry_task = NULL;
  130. /* create all the DAG nodes */
  131. unsigned i,j,k;
  132. start = starpu_timing_now();
  133. for (k = 0; k < nblocks; k++)
  134. {
  135. starpu_iteration_push(k);
  136. struct starpu_task *task = create_task_11(dataA, k);
  137. /* we defer the launch of the first task */
  138. if (k == 0)
  139. {
  140. entry_task = task;
  141. }
  142. else
  143. {
  144. int ret = starpu_task_submit(task);
  145. if (STARPU_UNLIKELY(ret == -ENODEV))
  146. {
  147. FPRINTF(stderr, "No worker may execute this task\n");
  148. exit(0);
  149. }
  150. }
  151. for (j = k+1; j<nblocks; j++)
  152. {
  153. create_task_21(dataA, k, j);
  154. for (i = k+1; i<nblocks; i++)
  155. {
  156. if (i <= j)
  157. create_task_22(dataA, k, i, j);
  158. }
  159. }
  160. starpu_iteration_pop();
  161. }
  162. /* schedule the codelet */
  163. int ret = starpu_task_submit(entry_task);
  164. if (STARPU_UNLIKELY(ret == -ENODEV))
  165. {
  166. FPRINTF(stderr, "No worker may execute this task\n");
  167. exit(0);
  168. }
  169. /* stall the application until the end of computations */
  170. starpu_tag_wait(TAG11(nblocks-1));
  171. starpu_data_unpartition(dataA, STARPU_MAIN_RAM);
  172. end = starpu_timing_now();
  173. double timing = end - start;
  174. unsigned n = starpu_matrix_get_nx(dataA);
  175. double flop = (1.0f*n*n*n)/3.0f;
  176. PRINTF("# size\tms\tGFlops\n");
  177. PRINTF("%u\t%.0f\t%.1f\n", n, timing/1000, (flop/timing/1000.0f));
  178. }
  179. static int initialize_system(int argc, char **argv, float **A, unsigned pinned)
  180. {
  181. int ret;
  182. int flags = STARPU_MALLOC_SIMULATION_FOLDED;
  183. #ifdef STARPU_HAVE_MAGMA
  184. magma_init();
  185. #endif
  186. ret = starpu_init(NULL);
  187. if (ret == -ENODEV)
  188. return 77;
  189. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  190. init_sizes();
  191. parse_args(argc, argv);
  192. #ifdef STARPU_USE_CUDA
  193. initialize_chol_model(&chol_model_11,"chol_model_11",cpu_chol_task_11_cost,cuda_chol_task_11_cost);
  194. initialize_chol_model(&chol_model_21,"chol_model_21",cpu_chol_task_21_cost,cuda_chol_task_21_cost);
  195. initialize_chol_model(&chol_model_22,"chol_model_22",cpu_chol_task_22_cost,cuda_chol_task_22_cost);
  196. #else
  197. initialize_chol_model(&chol_model_11,"chol_model_11",cpu_chol_task_11_cost,NULL);
  198. initialize_chol_model(&chol_model_21,"chol_model_21",cpu_chol_task_21_cost,NULL);
  199. initialize_chol_model(&chol_model_22,"chol_model_22",cpu_chol_task_22_cost,NULL);
  200. #endif
  201. starpu_cublas_init();
  202. if (pinned)
  203. flags |= STARPU_MALLOC_PINNED;
  204. starpu_malloc_flags((void **)A, size_p*size_p*sizeof(float), flags);
  205. return 0;
  206. }
  207. static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  208. {
  209. starpu_data_handle_t dataA;
  210. /* monitor and partition the A matrix into blocks :
  211. * one block is now determined by 2 unsigned (i,j) */
  212. starpu_matrix_data_register(&dataA, STARPU_MAIN_RAM, (uintptr_t)matA, ld, size, size, sizeof(float));
  213. starpu_data_set_sequential_consistency_flag(dataA, 0);
  214. struct starpu_data_filter f =
  215. {
  216. .filter_func = starpu_matrix_filter_vertical_block,
  217. .nchildren = nblocks
  218. };
  219. struct starpu_data_filter f2 =
  220. {
  221. .filter_func = starpu_matrix_filter_block,
  222. .nchildren = nblocks
  223. };
  224. starpu_data_map_filters(dataA, 2, &f, &f2);
  225. _cholesky(dataA, nblocks);
  226. starpu_data_unregister(dataA);
  227. }
  228. static void shutdown_system(float **matA, unsigned dim, unsigned pinned)
  229. {
  230. int flags = STARPU_MALLOC_SIMULATION_FOLDED;
  231. if (pinned)
  232. flags |= STARPU_MALLOC_PINNED;
  233. starpu_free_flags(*matA, dim*dim*sizeof(float), flags);
  234. starpu_cublas_shutdown();
  235. starpu_shutdown();
  236. }
  237. int main(int argc, char **argv)
  238. {
  239. /* create a simple definite positive symetric matrix example
  240. *
  241. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  242. * */
  243. float *mat = NULL;
  244. int ret = initialize_system(argc, argv, &mat, pinned_p);
  245. if (ret) return ret;
  246. #ifndef STARPU_SIMGRID
  247. unsigned i,j;
  248. for (i = 0; i < size_p; i++)
  249. {
  250. for (j = 0; j < size_p; j++)
  251. {
  252. mat[j +i*size_p] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size_p:0.0f);
  253. /* mat[j +i*size_p] = ((i == j)?1.0f*size_p:0.0f); */
  254. }
  255. }
  256. #endif
  257. #ifdef CHECK_OUTPUT
  258. FPRINTF(stdout, "Input :\n");
  259. for (j = 0; j < size_p; j++)
  260. {
  261. for (i = 0; i < size_p; i++)
  262. {
  263. if (i <= j)
  264. {
  265. FPRINTF(stdout, "%2.2f\t", mat[j +i*size_p]);
  266. }
  267. else
  268. {
  269. FPRINTF(stdout, ".\t");
  270. }
  271. }
  272. FPRINTF(stdout, "\n");
  273. }
  274. #endif
  275. cholesky(mat, size_p, size_p, nblocks_p);
  276. #ifdef CHECK_OUTPUT
  277. FPRINTF(stdout, "Results :\n");
  278. for (j = 0; j < size_p; j++)
  279. {
  280. for (i = 0; i < size_p; i++)
  281. {
  282. if (i <= j)
  283. {
  284. FPRINTF(stdout, "%2.2f\t", mat[j +i*size_p]);
  285. }
  286. else
  287. {
  288. FPRINTF(stdout, ".\t");
  289. mat[j+i*size_p] = 0.0f; /* debug */
  290. }
  291. }
  292. FPRINTF(stdout, "\n");
  293. }
  294. FPRINTF(stderr, "compute explicit LLt ...\n");
  295. float *test_mat = malloc(size_p*size_p*sizeof(float));
  296. STARPU_ASSERT(test_mat);
  297. STARPU_SSYRK("L", "N", size_p, size_p, 1.0f,
  298. mat, size_p, 0.0f, test_mat, size_p);
  299. FPRINTF(stderr, "comparing results ...\n");
  300. for (j = 0; j < size_p; j++)
  301. {
  302. for (i = 0; i < size_p; i++)
  303. {
  304. if (i <= j)
  305. {
  306. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size_p]);
  307. }
  308. else
  309. {
  310. FPRINTF(stdout, ".\t");
  311. }
  312. }
  313. FPRINTF(stdout, "\n");
  314. }
  315. free(test_mat);
  316. #endif
  317. shutdown_system(&mat, size_p, pinned_p);
  318. return 0;
  319. }