/min-dgels/base/SRC/dlantr.c
https://bitbucket.org/jeromerobert/starpu · C · 398 lines · 223 code · 39 blank · 136 comment · 70 complexity · cb82a04216daa81c5fb0606230b877de MD5 · raw file
- /* dlantr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- doublereal dlantr_(char *norm, char *uplo, char *diag, integer *m, integer *n,
- doublereal *a, integer *lda, doublereal *work)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublereal ret_val, d__1, d__2, d__3;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j;
- doublereal sum, scale;
- logical udiag;
- extern logical lsame_(char *, char *);
- doublereal value;
- extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLANTR returns the value of the one norm, or the Frobenius norm, or */
- /* the infinity norm, or the element of largest absolute value of a */
- /* trapezoidal or triangular matrix A. */
- /* Description */
- /* =========== */
- /* DLANTR returns the value */
- /* DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
- /* ( */
- /* ( norm1(A), NORM = '1', 'O' or 'o' */
- /* ( */
- /* ( normI(A), NORM = 'I' or 'i' */
- /* ( */
- /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
- /* where norm1 denotes the one norm of a matrix (maximum column sum), */
- /* normI denotes the infinity norm of a matrix (maximum row sum) and */
- /* normF denotes the Frobenius norm of a matrix (square root of sum of */
- /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
- /* Arguments */
- /* ========= */
- /* NORM (input) CHARACTER*1 */
- /* Specifies the value to be returned in DLANTR as described */
- /* above. */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the matrix A is upper or lower trapezoidal. */
- /* = 'U': Upper trapezoidal */
- /* = 'L': Lower trapezoidal */
- /* Note that A is triangular instead of trapezoidal if M = N. */
- /* DIAG (input) CHARACTER*1 */
- /* Specifies whether or not the matrix A has unit diagonal. */
- /* = 'N': Non-unit diagonal */
- /* = 'U': Unit diagonal */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0, and if */
- /* UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0, and if */
- /* UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* The trapezoidal matrix A (A is triangular if M = N). */
- /* If UPLO = 'U', the leading m by n upper trapezoidal part of */
- /* the array A contains the upper trapezoidal matrix, and the */
- /* strictly lower triangular part of A is not referenced. */
- /* If UPLO = 'L', the leading m by n lower trapezoidal part of */
- /* the array A contains the lower trapezoidal matrix, and the */
- /* strictly upper triangular part of A is not referenced. Note */
- /* that when DIAG = 'U', the diagonal elements of A are not */
- /* referenced and are assumed to be one. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(M,1). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
- /* where LWORK >= M when NORM = 'I'; otherwise, WORK is not */
- /* referenced. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --work;
- /* Function Body */
- if (min(*m,*n) == 0) {
- value = 0.;
- } else if (lsame_(norm, "M")) {
- /* Find max(abs(A(i,j))). */
- if (lsame_(diag, "U")) {
- value = 1.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__3 = *m, i__4 = j - 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
- d__1));
- value = max(d__2,d__3);
- /* L10: */
- }
- /* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
- d__1));
- value = max(d__2,d__3);
- /* L30: */
- }
- /* L40: */
- }
- }
- } else {
- value = 0.;
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(*m,j);
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
- d__1));
- value = max(d__2,d__3);
- /* L50: */
- }
- /* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
- d__1));
- value = max(d__2,d__3);
- /* L70: */
- }
- /* L80: */
- }
- }
- }
- } else if (lsame_(norm, "O") || *(unsigned char *)
- norm == '1') {
- /* Find norm1(A). */
- value = 0.;
- udiag = lsame_(diag, "U");
- if (lsame_(uplo, "U")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (udiag && j <= *m) {
- sum = 1.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L90: */
- }
- } else {
- sum = 0.;
- i__2 = min(*m,j);
- for (i__ = 1; i__ <= i__2; ++i__) {
- sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L100: */
- }
- }
- value = max(value,sum);
- /* L110: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (udiag) {
- sum = 1.;
- i__2 = *m;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L120: */
- }
- } else {
- sum = 0.;
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L130: */
- }
- }
- value = max(value,sum);
- /* L140: */
- }
- }
- } else if (lsame_(norm, "I")) {
- /* Find normI(A). */
- if (lsame_(uplo, "U")) {
- if (lsame_(diag, "U")) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 1.;
- /* L150: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__3 = *m, i__4 = j - 1;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L160: */
- }
- /* L170: */
- }
- } else {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- /* L180: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(*m,j);
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L190: */
- }
- /* L200: */
- }
- }
- } else {
- if (lsame_(diag, "U")) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 1.;
- /* L210: */
- }
- i__1 = *m;
- for (i__ = *n + 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- /* L220: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L230: */
- }
- /* L240: */
- }
- } else {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- /* L250: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- /* L260: */
- }
- /* L270: */
- }
- }
- }
- value = 0.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__1 = value, d__2 = work[i__];
- value = max(d__1,d__2);
- /* L280: */
- }
- } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
- /* Find normF(A). */
- if (lsame_(uplo, "U")) {
- if (lsame_(diag, "U")) {
- scale = 1.;
- sum = (doublereal) min(*m,*n);
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- /* Computing MIN */
- i__3 = *m, i__4 = j - 1;
- i__2 = min(i__3,i__4);
- dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
- /* L290: */
- }
- } else {
- scale = 0.;
- sum = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(*m,j);
- dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
- /* L300: */
- }
- }
- } else {
- if (lsame_(diag, "U")) {
- scale = 1.;
- sum = (doublereal) min(*m,*n);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m - j;
- /* Computing MIN */
- i__3 = *m, i__4 = j + 1;
- dlassq_(&i__2, &a[min(i__3, i__4)+ j * a_dim1], &c__1, &
- scale, &sum);
- /* L310: */
- }
- } else {
- scale = 0.;
- sum = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m - j + 1;
- dlassq_(&i__2, &a[j + j * a_dim1], &c__1, &scale, &sum);
- /* L320: */
- }
- }
- }
- value = scale * sqrt(sum);
- }
- ret_val = value;
- return ret_val;
- /* End of DLANTR */
- } /* dlantr_ */