/doc/source/tutorials.rst
ReStructuredText | 181 lines | 132 code | 49 blank | 0 comment | 0 complexity | a3f19d45eabdafc0b0c5719163903f2f MD5 | raw file
- .. _tutorials:
- *********
- Tutorials
- *********
- This is a guide to many pandas tutorials, geared mainly for new users.
- Internal Guides
- ---------------
- pandas own :ref:`10 Minutes to pandas<10min>`
- More complex recipes are in the :ref:`Cookbook<cookbook>`
- pandas Cookbook
- ---------------
- The goal of this cookbook (by `Julia Evans <http://jvns.ca>`_) is to
- give you some concrete examples for getting started with pandas. These
- are examples with real-world data, and all the bugs and weirdness that
- that entails.
- Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
- repository <http://github.com/jvns/pandas-cookbook>`_. To run the examples in this tutorial, you'll need to
- clone the GitHub repository and get IPython Notebook running.
- See `How to use this cookbook <https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook>`_.
- - `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
- Shows off IPython's awesome tab completion and magic functions.
- - `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
- Reading your data into pandas is pretty much the easiest thing. Even
- when the encoding is wrong!
- - `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
- It's not totally obvious how to select data from a pandas dataframe.
- Here we explain the basics (how to take slices and get columns)
- - `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
- Here we get into serious slicing and dicing and learn how to filter
- dataframes in complicated ways, really fast.
- - `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
- Groupby/aggregate is seriously my favorite thing about pandas
- and I use it all the time. You should probably read this.
- - `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
- Here you get to find out if it's cold in Montreal in the winter
- (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
- - `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
- Strings with pandas are great. It has all these vectorized string
- operations and they're the best. We will turn a bunch of strings
- containing "Snow" into vectors of numbers in a trice.
- - `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
- Cleaning up messy data is never a joy, but with pandas it's easier.
- - `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
- Parsing Unix timestamps is confusing at first but it turns out
- to be really easy.
- Lessons for New pandas Users
- ----------------------------
- For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`__.
- - `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
- - Importing libraries
- - Creating data sets
- - Creating data frames
- - Reading from CSV
- - Exporting to CSV
- - Finding maximums
- - Plotting data
- - `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
- - Reading from TXT
- - Exporting to TXT
- - Selecting top/bottom records
- - Descriptive statistics
- - Grouping/sorting data
- - `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
- - Creating functions
- - Reading from EXCEL
- - Exporting to EXCEL
- - Outliers
- - Lambda functions
- - Slice and dice data
- - `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
- - Adding/deleting columns
- - Index operations
- - `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
- - Stack/Unstack/Transpose functions
- - `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
- - GroupBy function
- - `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
- - Ways to calculate outliers
- - `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
- - Read from Microsoft SQL databases
- - `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
- - Export to CSV/EXCEL/TXT
- - `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
- - Converting between different kinds of formats
- - `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
- - Combining data from various sources
- Practical data analysis with Python
- -----------------------------------
- This `guide <http://wavedatalab.github.io/datawithpython>`_ is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset.
- There are four sections covering selected topics as follows:
- - `Munging Data <http://wavedatalab.github.io/datawithpython/munge.html>`_
- - `Aggregating Data <http://wavedatalab.github.io/datawithpython/aggregate.html>`_
- - `Visualizing Data <http://wavedatalab.github.io/datawithpython/visualize.html>`_
- - `Time Series <http://wavedatalab.github.io/datawithpython/timeseries.html>`_
- .. _tutorial-exercises-new-users:
- Exercises for New Users
- -----------------------
- Practice your skills with real data sets and exercises.
- For more resources, please visit the main `repository <https://github.com/guipsamora/pandas_exercises>`__.
- - `01 - Getting & Knowing Your Data <https://github.com/guipsamora/pandas_exercises/tree/master/01_Getting_%26_Knowing_Your_Data>`_
- - `02 - Filtering & Sorting <https://github.com/guipsamora/pandas_exercises/tree/master/02_Filtering_%26_Sorting>`_
- - `03 - Grouping <https://github.com/guipsamora/pandas_exercises/tree/master/03_Grouping>`_
- - `04 - Apply <https://github.com/guipsamora/pandas_exercises/tree/master/04_Apply>`_
- - `05 - Merge <https://github.com/guipsamora/pandas_exercises/tree/master/05_Merge>`_
- - `06 - Stats <https://github.com/guipsamora/pandas_exercises/tree/master/06_Stats>`_
- - `07 - Visualization <https://github.com/guipsamora/pandas_exercises/tree/master/07_Visualization>`_
- - `08 - Creating Series and DataFrames <https://github.com/guipsamora/pandas_exercises/tree/master/08_Creating_Series_and_DataFrames/Pokemon>`_
- - `09 - Time Series <https://github.com/guipsamora/pandas_exercises/tree/master/09_Time_Series>`_
- - `10 - Deleting <https://github.com/guipsamora/pandas_exercises/tree/master/10_Deleting>`_
- .. _tutorial-modern:
- Modern Pandas
- -------------
- - `Modern Pandas <http://tomaugspurger.github.io/modern-1-intro.html>`_
- - `Method Chaining <http://tomaugspurger.github.io/method-chaining.html>`_
- - `Indexes <http://tomaugspurger.github.io/modern-3-indexes.html>`_
- - `Performance <http://tomaugspurger.github.io/modern-4-performance.html>`_
- - `Tidy Data <http://tomaugspurger.github.io/modern-5-tidy.html>`_
- - `Visualization <http://tomaugspurger.github.io/modern-6-visualization.html>`_
- Excel charts with pandas, vincent and xlsxwriter
- ------------------------------------------------
- - `Using Pandas and XlsxWriter to create Excel charts <https://pandas-xlsxwriter-charts.readthedocs.io/>`_
- Various Tutorials
- -----------------
- - `Wes McKinney's (pandas BDFL) blog <http://blog.wesmckinney.com/>`_
- - `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
- - `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
- - `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
- - `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
- - `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
- - `Pandas Tutorial, by Mikhail Semeniuk <http://www.bearrelroll.com/2013/05/python-pandas-tutorial>`_
- - `Pandas DataFrames Tutorial, by Karlijn Willems <http://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python>`_
- - `A concise tutorial with real life examples <https://tutswiki.com/pandas-cookbook/chapter1>`_