PageRenderTime 355ms CodeModel.GetById 15ms RepoModel.GetById 0ms app.codeStats 0ms

/doc/source/tutorials.rst

https://github.com/neurodebian/pandas
ReStructuredText | 181 lines | 132 code | 49 blank | 0 comment | 0 complexity | a3f19d45eabdafc0b0c5719163903f2f MD5 | raw file
  1. .. _tutorials:
  2. *********
  3. Tutorials
  4. *********
  5. This is a guide to many pandas tutorials, geared mainly for new users.
  6. Internal Guides
  7. ---------------
  8. pandas own :ref:`10 Minutes to pandas<10min>`
  9. More complex recipes are in the :ref:`Cookbook<cookbook>`
  10. pandas Cookbook
  11. ---------------
  12. The goal of this cookbook (by `Julia Evans <http://jvns.ca>`_) is to
  13. give you some concrete examples for getting started with pandas. These
  14. are examples with real-world data, and all the bugs and weirdness that
  15. that entails.
  16. Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
  17. repository <http://github.com/jvns/pandas-cookbook>`_. To run the examples in this tutorial, you'll need to
  18. clone the GitHub repository and get IPython Notebook running.
  19. See `How to use this cookbook <https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook>`_.
  20. - `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
  21. Shows off IPython's awesome tab completion and magic functions.
  22. - `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
  23. Reading your data into pandas is pretty much the easiest thing. Even
  24. when the encoding is wrong!
  25. - `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
  26. It's not totally obvious how to select data from a pandas dataframe.
  27. Here we explain the basics (how to take slices and get columns)
  28. - `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
  29. Here we get into serious slicing and dicing and learn how to filter
  30. dataframes in complicated ways, really fast.
  31. - `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
  32. Groupby/aggregate is seriously my favorite thing about pandas
  33. and I use it all the time. You should probably read this.
  34. - `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
  35. Here you get to find out if it's cold in Montreal in the winter
  36. (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
  37. - `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
  38. Strings with pandas are great. It has all these vectorized string
  39. operations and they're the best. We will turn a bunch of strings
  40. containing "Snow" into vectors of numbers in a trice.
  41. - `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
  42. Cleaning up messy data is never a joy, but with pandas it's easier.
  43. - `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
  44. Parsing Unix timestamps is confusing at first but it turns out
  45. to be really easy.
  46. Lessons for New pandas Users
  47. ----------------------------
  48. For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`__.
  49. - `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
  50. - Importing libraries
  51. - Creating data sets
  52. - Creating data frames
  53. - Reading from CSV
  54. - Exporting to CSV
  55. - Finding maximums
  56. - Plotting data
  57. - `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
  58. - Reading from TXT
  59. - Exporting to TXT
  60. - Selecting top/bottom records
  61. - Descriptive statistics
  62. - Grouping/sorting data
  63. - `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
  64. - Creating functions
  65. - Reading from EXCEL
  66. - Exporting to EXCEL
  67. - Outliers
  68. - Lambda functions
  69. - Slice and dice data
  70. - `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
  71. - Adding/deleting columns
  72. - Index operations
  73. - `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
  74. - Stack/Unstack/Transpose functions
  75. - `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
  76. - GroupBy function
  77. - `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
  78. - Ways to calculate outliers
  79. - `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
  80. - Read from Microsoft SQL databases
  81. - `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
  82. - Export to CSV/EXCEL/TXT
  83. - `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
  84. - Converting between different kinds of formats
  85. - `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
  86. - Combining data from various sources
  87. Practical data analysis with Python
  88. -----------------------------------
  89. This `guide <http://wavedatalab.github.io/datawithpython>`_ is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset.
  90. There are four sections covering selected topics as follows:
  91. - `Munging Data <http://wavedatalab.github.io/datawithpython/munge.html>`_
  92. - `Aggregating Data <http://wavedatalab.github.io/datawithpython/aggregate.html>`_
  93. - `Visualizing Data <http://wavedatalab.github.io/datawithpython/visualize.html>`_
  94. - `Time Series <http://wavedatalab.github.io/datawithpython/timeseries.html>`_
  95. .. _tutorial-exercises-new-users:
  96. Exercises for New Users
  97. -----------------------
  98. Practice your skills with real data sets and exercises.
  99. For more resources, please visit the main `repository <https://github.com/guipsamora/pandas_exercises>`__.
  100. - `01 - Getting & Knowing Your Data <https://github.com/guipsamora/pandas_exercises/tree/master/01_Getting_%26_Knowing_Your_Data>`_
  101. - `02 - Filtering & Sorting <https://github.com/guipsamora/pandas_exercises/tree/master/02_Filtering_%26_Sorting>`_
  102. - `03 - Grouping <https://github.com/guipsamora/pandas_exercises/tree/master/03_Grouping>`_
  103. - `04 - Apply <https://github.com/guipsamora/pandas_exercises/tree/master/04_Apply>`_
  104. - `05 - Merge <https://github.com/guipsamora/pandas_exercises/tree/master/05_Merge>`_
  105. - `06 - Stats <https://github.com/guipsamora/pandas_exercises/tree/master/06_Stats>`_
  106. - `07 - Visualization <https://github.com/guipsamora/pandas_exercises/tree/master/07_Visualization>`_
  107. - `08 - Creating Series and DataFrames <https://github.com/guipsamora/pandas_exercises/tree/master/08_Creating_Series_and_DataFrames/Pokemon>`_
  108. - `09 - Time Series <https://github.com/guipsamora/pandas_exercises/tree/master/09_Time_Series>`_
  109. - `10 - Deleting <https://github.com/guipsamora/pandas_exercises/tree/master/10_Deleting>`_
  110. .. _tutorial-modern:
  111. Modern Pandas
  112. -------------
  113. - `Modern Pandas <http://tomaugspurger.github.io/modern-1-intro.html>`_
  114. - `Method Chaining <http://tomaugspurger.github.io/method-chaining.html>`_
  115. - `Indexes <http://tomaugspurger.github.io/modern-3-indexes.html>`_
  116. - `Performance <http://tomaugspurger.github.io/modern-4-performance.html>`_
  117. - `Tidy Data <http://tomaugspurger.github.io/modern-5-tidy.html>`_
  118. - `Visualization <http://tomaugspurger.github.io/modern-6-visualization.html>`_
  119. Excel charts with pandas, vincent and xlsxwriter
  120. ------------------------------------------------
  121. - `Using Pandas and XlsxWriter to create Excel charts <https://pandas-xlsxwriter-charts.readthedocs.io/>`_
  122. Various Tutorials
  123. -----------------
  124. - `Wes McKinney's (pandas BDFL) blog <http://blog.wesmckinney.com/>`_
  125. - `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
  126. - `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
  127. - `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
  128. - `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
  129. - `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
  130. - `Pandas Tutorial, by Mikhail Semeniuk <http://www.bearrelroll.com/2013/05/python-pandas-tutorial>`_
  131. - `Pandas DataFrames Tutorial, by Karlijn Willems <http://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python>`_
  132. - `A concise tutorial with real life examples <https://tutswiki.com/pandas-cookbook/chapter1>`_