/pandas/tests/series/test_combine_concat.py
Python | 311 lines | 228 code | 63 blank | 20 comment | 18 complexity | be58fce583536f9022a45bdab39943e4 MD5 | raw file
- # coding=utf-8
- # pylint: disable-msg=E1101,W0612
- import pytest
- from datetime import datetime
- from numpy import nan
- import numpy as np
- import pandas as pd
- from pandas import Series, DataFrame, date_range, DatetimeIndex
- from pandas import compat
- from pandas.util.testing import assert_series_equal
- import pandas.util.testing as tm
- from .common import TestData
- class TestSeriesCombine(TestData):
- def test_append(self):
- appendedSeries = self.series.append(self.objSeries)
- for idx, value in compat.iteritems(appendedSeries):
- if idx in self.series.index:
- assert value == self.series[idx]
- elif idx in self.objSeries.index:
- assert value == self.objSeries[idx]
- else:
- self.fail("orphaned index!")
- pytest.raises(ValueError, self.ts.append, self.ts,
- verify_integrity=True)
- def test_append_many(self):
- pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]]
- result = pieces[0].append(pieces[1:])
- assert_series_equal(result, self.ts)
- def test_append_duplicates(self):
- # GH 13677
- s1 = pd.Series([1, 2, 3])
- s2 = pd.Series([4, 5, 6])
- exp = pd.Series([1, 2, 3, 4, 5, 6], index=[0, 1, 2, 0, 1, 2])
- tm.assert_series_equal(s1.append(s2), exp)
- tm.assert_series_equal(pd.concat([s1, s2]), exp)
- # the result must have RangeIndex
- exp = pd.Series([1, 2, 3, 4, 5, 6])
- tm.assert_series_equal(s1.append(s2, ignore_index=True),
- exp, check_index_type=True)
- tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True),
- exp, check_index_type=True)
- msg = 'Indexes have overlapping values:'
- with tm.assert_raises_regex(ValueError, msg):
- s1.append(s2, verify_integrity=True)
- with tm.assert_raises_regex(ValueError, msg):
- pd.concat([s1, s2], verify_integrity=True)
- def test_combine_first(self):
- values = tm.makeIntIndex(20).values.astype(float)
- series = Series(values, index=tm.makeIntIndex(20))
- series_copy = series * 2
- series_copy[::2] = np.NaN
- # nothing used from the input
- combined = series.combine_first(series_copy)
- tm.assert_series_equal(combined, series)
- # Holes filled from input
- combined = series_copy.combine_first(series)
- assert np.isfinite(combined).all()
- tm.assert_series_equal(combined[::2], series[::2])
- tm.assert_series_equal(combined[1::2], series_copy[1::2])
- # mixed types
- index = tm.makeStringIndex(20)
- floats = Series(tm.randn(20), index=index)
- strings = Series(tm.makeStringIndex(10), index=index[::2])
- combined = strings.combine_first(floats)
- tm.assert_series_equal(strings, combined.loc[index[::2]])
- tm.assert_series_equal(floats[1::2].astype(object),
- combined.loc[index[1::2]])
- # corner case
- s = Series([1., 2, 3], index=[0, 1, 2])
- result = s.combine_first(Series([], index=[]))
- assert_series_equal(s, result)
- def test_update(self):
- s = Series([1.5, nan, 3., 4., nan])
- s2 = Series([nan, 3.5, nan, 5.])
- s.update(s2)
- expected = Series([1.5, 3.5, 3., 5., np.nan])
- assert_series_equal(s, expected)
- # GH 3217
- df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
- df['c'] = np.nan
- # this will fail as long as series is a sub-class of ndarray
- # df['c'].update(Series(['foo'],index=[0])) #####
- def test_concat_empty_series_dtypes_roundtrips(self):
- # round-tripping with self & like self
- dtypes = map(np.dtype, ['float64', 'int8', 'uint8', 'bool', 'm8[ns]',
- 'M8[ns]'])
- for dtype in dtypes:
- assert pd.concat([Series(dtype=dtype)]).dtype == dtype
- assert pd.concat([Series(dtype=dtype),
- Series(dtype=dtype)]).dtype == dtype
- def int_result_type(dtype, dtype2):
- typs = set([dtype.kind, dtype2.kind])
- if not len(typs - set(['i', 'u', 'b'])) and (dtype.kind == 'i' or
- dtype2.kind == 'i'):
- return 'i'
- elif not len(typs - set(['u', 'b'])) and (dtype.kind == 'u' or
- dtype2.kind == 'u'):
- return 'u'
- return None
- def float_result_type(dtype, dtype2):
- typs = set([dtype.kind, dtype2.kind])
- if not len(typs - set(['f', 'i', 'u'])) and (dtype.kind == 'f' or
- dtype2.kind == 'f'):
- return 'f'
- return None
- def get_result_type(dtype, dtype2):
- result = float_result_type(dtype, dtype2)
- if result is not None:
- return result
- result = int_result_type(dtype, dtype2)
- if result is not None:
- return result
- return 'O'
- for dtype in dtypes:
- for dtype2 in dtypes:
- if dtype == dtype2:
- continue
- expected = get_result_type(dtype, dtype2)
- result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)
- ]).dtype
- assert result.kind == expected
- def test_concat_empty_series_dtypes(self):
- # booleans
- assert pd.concat([Series(dtype=np.bool_),
- Series(dtype=np.int32)]).dtype == np.int32
- assert pd.concat([Series(dtype=np.bool_),
- Series(dtype=np.float32)]).dtype == np.object_
- # datetime-like
- assert pd.concat([Series(dtype='m8[ns]'),
- Series(dtype=np.bool)]).dtype == np.object_
- assert pd.concat([Series(dtype='m8[ns]'),
- Series(dtype=np.int64)]).dtype == np.object_
- assert pd.concat([Series(dtype='M8[ns]'),
- Series(dtype=np.bool)]).dtype == np.object_
- assert pd.concat([Series(dtype='M8[ns]'),
- Series(dtype=np.int64)]).dtype == np.object_
- assert pd.concat([Series(dtype='M8[ns]'),
- Series(dtype=np.bool_),
- Series(dtype=np.int64)]).dtype == np.object_
- # categorical
- assert pd.concat([Series(dtype='category'),
- Series(dtype='category')]).dtype == 'category'
- assert pd.concat([Series(dtype='category'),
- Series(dtype='float64')]).dtype == 'float64'
- assert pd.concat([Series(dtype='category'),
- Series(dtype='object')]).dtype == 'object'
- # sparse
- result = pd.concat([Series(dtype='float64').to_sparse(), Series(
- dtype='float64').to_sparse()])
- assert result.dtype == np.float64
- assert result.ftype == 'float64:sparse'
- result = pd.concat([Series(dtype='float64').to_sparse(), Series(
- dtype='float64')])
- assert result.dtype == np.float64
- assert result.ftype == 'float64:sparse'
- result = pd.concat([Series(dtype='float64').to_sparse(), Series(
- dtype='object')])
- assert result.dtype == np.object_
- assert result.ftype == 'object:dense'
- def test_combine_first_dt64(self):
- from pandas.core.tools.datetimes import to_datetime
- s0 = to_datetime(Series(["2010", np.NaN]))
- s1 = to_datetime(Series([np.NaN, "2011"]))
- rs = s0.combine_first(s1)
- xp = to_datetime(Series(['2010', '2011']))
- assert_series_equal(rs, xp)
- s0 = to_datetime(Series(["2010", np.NaN]))
- s1 = Series([np.NaN, "2011"])
- rs = s0.combine_first(s1)
- xp = Series([datetime(2010, 1, 1), '2011'])
- assert_series_equal(rs, xp)
- class TestTimeseries(object):
- def test_append_concat(self):
- rng = date_range('5/8/2012 1:45', periods=10, freq='5T')
- ts = Series(np.random.randn(len(rng)), rng)
- df = DataFrame(np.random.randn(len(rng), 4), index=rng)
- result = ts.append(ts)
- result_df = df.append(df)
- ex_index = DatetimeIndex(np.tile(rng.values, 2))
- tm.assert_index_equal(result.index, ex_index)
- tm.assert_index_equal(result_df.index, ex_index)
- appended = rng.append(rng)
- tm.assert_index_equal(appended, ex_index)
- appended = rng.append([rng, rng])
- ex_index = DatetimeIndex(np.tile(rng.values, 3))
- tm.assert_index_equal(appended, ex_index)
- # different index names
- rng1 = rng.copy()
- rng2 = rng.copy()
- rng1.name = 'foo'
- rng2.name = 'bar'
- assert rng1.append(rng1).name == 'foo'
- assert rng1.append(rng2).name is None
- def test_append_concat_tz(self):
- # see gh-2938
- rng = date_range('5/8/2012 1:45', periods=10, freq='5T',
- tz='US/Eastern')
- rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T',
- tz='US/Eastern')
- rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T',
- tz='US/Eastern')
- ts = Series(np.random.randn(len(rng)), rng)
- df = DataFrame(np.random.randn(len(rng), 4), index=rng)
- ts2 = Series(np.random.randn(len(rng2)), rng2)
- df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2)
- result = ts.append(ts2)
- result_df = df.append(df2)
- tm.assert_index_equal(result.index, rng3)
- tm.assert_index_equal(result_df.index, rng3)
- appended = rng.append(rng2)
- tm.assert_index_equal(appended, rng3)
- def test_append_concat_tz_explicit_pytz(self):
- # see gh-2938
- from pytz import timezone as timezone
- rng = date_range('5/8/2012 1:45', periods=10, freq='5T',
- tz=timezone('US/Eastern'))
- rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T',
- tz=timezone('US/Eastern'))
- rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T',
- tz=timezone('US/Eastern'))
- ts = Series(np.random.randn(len(rng)), rng)
- df = DataFrame(np.random.randn(len(rng), 4), index=rng)
- ts2 = Series(np.random.randn(len(rng2)), rng2)
- df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2)
- result = ts.append(ts2)
- result_df = df.append(df2)
- tm.assert_index_equal(result.index, rng3)
- tm.assert_index_equal(result_df.index, rng3)
- appended = rng.append(rng2)
- tm.assert_index_equal(appended, rng3)
- def test_append_concat_tz_dateutil(self):
- # see gh-2938
- rng = date_range('5/8/2012 1:45', periods=10, freq='5T',
- tz='dateutil/US/Eastern')
- rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T',
- tz='dateutil/US/Eastern')
- rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T',
- tz='dateutil/US/Eastern')
- ts = Series(np.random.randn(len(rng)), rng)
- df = DataFrame(np.random.randn(len(rng), 4), index=rng)
- ts2 = Series(np.random.randn(len(rng2)), rng2)
- df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2)
- result = ts.append(ts2)
- result_df = df.append(df2)
- tm.assert_index_equal(result.index, rng3)
- tm.assert_index_equal(result_df.index, rng3)
- appended = rng.append(rng2)
- tm.assert_index_equal(appended, rng3)