PageRenderTime 59ms CodeModel.GetById 35ms RepoModel.GetById 0ms app.codeStats 0ms

/drivers/hwmon/mlxreg-fan.c

https://github.com/acmel/linux
C | 523 lines | 380 code | 68 blank | 75 comment | 59 complexity | dbd1917a37233cdb0c9211575bf30d68 MD5 | raw file
  1. // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
  2. //
  3. // Copyright (c) 2018 Mellanox Technologies. All rights reserved.
  4. // Copyright (c) 2018 Vadim Pasternak <vadimp@mellanox.com>
  5. #include <linux/bitops.h>
  6. #include <linux/device.h>
  7. #include <linux/hwmon.h>
  8. #include <linux/module.h>
  9. #include <linux/platform_data/mlxreg.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/regmap.h>
  12. #include <linux/thermal.h>
  13. #define MLXREG_FAN_MAX_TACHO 12
  14. #define MLXREG_FAN_MAX_STATE 10
  15. #define MLXREG_FAN_MIN_DUTY 51 /* 20% */
  16. #define MLXREG_FAN_MAX_DUTY 255 /* 100% */
  17. /*
  18. * Minimum and maximum FAN allowed speed in percent: from 20% to 100%. Values
  19. * MLXREG_FAN_MAX_STATE + x, where x is between 2 and 10 are used for
  20. * setting FAN speed dynamic minimum. For example, if value is set to 14 (40%)
  21. * cooling levels vector will be set to 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 10 to
  22. * introduce PWM speed in percent: 40, 40, 40, 40, 40, 50, 60. 70, 80, 90, 100.
  23. */
  24. #define MLXREG_FAN_SPEED_MIN (MLXREG_FAN_MAX_STATE + 2)
  25. #define MLXREG_FAN_SPEED_MAX (MLXREG_FAN_MAX_STATE * 2)
  26. #define MLXREG_FAN_SPEED_MIN_LEVEL 2 /* 20 percent */
  27. #define MLXREG_FAN_TACHO_SAMPLES_PER_PULSE_DEF 44
  28. #define MLXREG_FAN_TACHO_DIV_MIN 283
  29. #define MLXREG_FAN_TACHO_DIV_DEF (MLXREG_FAN_TACHO_DIV_MIN * 4)
  30. #define MLXREG_FAN_TACHO_DIV_SCALE_MAX 64
  31. /*
  32. * FAN datasheet defines the formula for RPM calculations as RPM = 15/t-high.
  33. * The logic in a programmable device measures the time t-high by sampling the
  34. * tachometer every t-sample (with the default value 11.32 uS) and increment
  35. * a counter (N) as long as the pulse has not change:
  36. * RPM = 15 / (t-sample * (K + Regval)), where:
  37. * Regval: is the value read from the programmable device register;
  38. * - 0xff - represents tachometer fault;
  39. * - 0xfe - represents tachometer minimum value , which is 4444 RPM;
  40. * - 0x00 - represents tachometer maximum value , which is 300000 RPM;
  41. * K: is 44 and it represents the minimum allowed samples per pulse;
  42. * N: is equal K + Regval;
  43. * In order to calculate RPM from the register value the following formula is
  44. * used: RPM = 15 / ((Regval + K) * 11.32) * 10^(-6)), which in the
  45. * default case is modified to:
  46. * RPM = 15000000 * 100 / ((Regval + 44) * 1132);
  47. * - for Regval 0x00, RPM will be 15000000 * 100 / (44 * 1132) = 30115;
  48. * - for Regval 0xfe, RPM will be 15000000 * 100 / ((254 + 44) * 1132) = 4446;
  49. * In common case the formula is modified to:
  50. * RPM = 15000000 * 100 / ((Regval + samples) * divider).
  51. */
  52. #define MLXREG_FAN_GET_RPM(rval, d, s) (DIV_ROUND_CLOSEST(15000000 * 100, \
  53. ((rval) + (s)) * (d)))
  54. #define MLXREG_FAN_GET_FAULT(val, mask) ((val) == (mask))
  55. #define MLXREG_FAN_PWM_DUTY2STATE(duty) (DIV_ROUND_CLOSEST((duty) * \
  56. MLXREG_FAN_MAX_STATE, \
  57. MLXREG_FAN_MAX_DUTY))
  58. #define MLXREG_FAN_PWM_STATE2DUTY(stat) (DIV_ROUND_CLOSEST((stat) * \
  59. MLXREG_FAN_MAX_DUTY, \
  60. MLXREG_FAN_MAX_STATE))
  61. /*
  62. * struct mlxreg_fan_tacho - tachometer data (internal use):
  63. *
  64. * @connected: indicates if tachometer is connected;
  65. * @reg: register offset;
  66. * @mask: fault mask;
  67. */
  68. struct mlxreg_fan_tacho {
  69. bool connected;
  70. u32 reg;
  71. u32 mask;
  72. };
  73. /*
  74. * struct mlxreg_fan_pwm - PWM data (internal use):
  75. *
  76. * @connected: indicates if PWM is connected;
  77. * @reg: register offset;
  78. */
  79. struct mlxreg_fan_pwm {
  80. bool connected;
  81. u32 reg;
  82. };
  83. /*
  84. * struct mlxreg_fan - private data (internal use):
  85. *
  86. * @dev: basic device;
  87. * @regmap: register map of parent device;
  88. * @tacho: tachometer data;
  89. * @pwm: PWM data;
  90. * @samples: minimum allowed samples per pulse;
  91. * @divider: divider value for tachometer RPM calculation;
  92. * @cooling: cooling device levels;
  93. * @cdev: cooling device;
  94. */
  95. struct mlxreg_fan {
  96. struct device *dev;
  97. void *regmap;
  98. struct mlxreg_core_platform_data *pdata;
  99. struct mlxreg_fan_tacho tacho[MLXREG_FAN_MAX_TACHO];
  100. struct mlxreg_fan_pwm pwm;
  101. int samples;
  102. int divider;
  103. u8 cooling_levels[MLXREG_FAN_MAX_STATE + 1];
  104. struct thermal_cooling_device *cdev;
  105. };
  106. static int
  107. mlxreg_fan_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
  108. int channel, long *val)
  109. {
  110. struct mlxreg_fan *fan = dev_get_drvdata(dev);
  111. struct mlxreg_fan_tacho *tacho;
  112. u32 regval;
  113. int err;
  114. switch (type) {
  115. case hwmon_fan:
  116. tacho = &fan->tacho[channel];
  117. switch (attr) {
  118. case hwmon_fan_input:
  119. err = regmap_read(fan->regmap, tacho->reg, &regval);
  120. if (err)
  121. return err;
  122. *val = MLXREG_FAN_GET_RPM(regval, fan->divider,
  123. fan->samples);
  124. break;
  125. case hwmon_fan_fault:
  126. err = regmap_read(fan->regmap, tacho->reg, &regval);
  127. if (err)
  128. return err;
  129. *val = MLXREG_FAN_GET_FAULT(regval, tacho->mask);
  130. break;
  131. default:
  132. return -EOPNOTSUPP;
  133. }
  134. break;
  135. case hwmon_pwm:
  136. switch (attr) {
  137. case hwmon_pwm_input:
  138. err = regmap_read(fan->regmap, fan->pwm.reg, &regval);
  139. if (err)
  140. return err;
  141. *val = regval;
  142. break;
  143. default:
  144. return -EOPNOTSUPP;
  145. }
  146. break;
  147. default:
  148. return -EOPNOTSUPP;
  149. }
  150. return 0;
  151. }
  152. static int
  153. mlxreg_fan_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
  154. int channel, long val)
  155. {
  156. struct mlxreg_fan *fan = dev_get_drvdata(dev);
  157. switch (type) {
  158. case hwmon_pwm:
  159. switch (attr) {
  160. case hwmon_pwm_input:
  161. if (val < MLXREG_FAN_MIN_DUTY ||
  162. val > MLXREG_FAN_MAX_DUTY)
  163. return -EINVAL;
  164. return regmap_write(fan->regmap, fan->pwm.reg, val);
  165. default:
  166. return -EOPNOTSUPP;
  167. }
  168. break;
  169. default:
  170. return -EOPNOTSUPP;
  171. }
  172. return -EOPNOTSUPP;
  173. }
  174. static umode_t
  175. mlxreg_fan_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr,
  176. int channel)
  177. {
  178. switch (type) {
  179. case hwmon_fan:
  180. if (!(((struct mlxreg_fan *)data)->tacho[channel].connected))
  181. return 0;
  182. switch (attr) {
  183. case hwmon_fan_input:
  184. case hwmon_fan_fault:
  185. return 0444;
  186. default:
  187. break;
  188. }
  189. break;
  190. case hwmon_pwm:
  191. if (!(((struct mlxreg_fan *)data)->pwm.connected))
  192. return 0;
  193. switch (attr) {
  194. case hwmon_pwm_input:
  195. return 0644;
  196. default:
  197. break;
  198. }
  199. break;
  200. default:
  201. break;
  202. }
  203. return 0;
  204. }
  205. static const struct hwmon_channel_info *mlxreg_fan_hwmon_info[] = {
  206. HWMON_CHANNEL_INFO(fan,
  207. HWMON_F_INPUT | HWMON_F_FAULT,
  208. HWMON_F_INPUT | HWMON_F_FAULT,
  209. HWMON_F_INPUT | HWMON_F_FAULT,
  210. HWMON_F_INPUT | HWMON_F_FAULT,
  211. HWMON_F_INPUT | HWMON_F_FAULT,
  212. HWMON_F_INPUT | HWMON_F_FAULT,
  213. HWMON_F_INPUT | HWMON_F_FAULT,
  214. HWMON_F_INPUT | HWMON_F_FAULT,
  215. HWMON_F_INPUT | HWMON_F_FAULT,
  216. HWMON_F_INPUT | HWMON_F_FAULT,
  217. HWMON_F_INPUT | HWMON_F_FAULT,
  218. HWMON_F_INPUT | HWMON_F_FAULT),
  219. HWMON_CHANNEL_INFO(pwm,
  220. HWMON_PWM_INPUT),
  221. NULL
  222. };
  223. static const struct hwmon_ops mlxreg_fan_hwmon_hwmon_ops = {
  224. .is_visible = mlxreg_fan_is_visible,
  225. .read = mlxreg_fan_read,
  226. .write = mlxreg_fan_write,
  227. };
  228. static const struct hwmon_chip_info mlxreg_fan_hwmon_chip_info = {
  229. .ops = &mlxreg_fan_hwmon_hwmon_ops,
  230. .info = mlxreg_fan_hwmon_info,
  231. };
  232. static int mlxreg_fan_get_max_state(struct thermal_cooling_device *cdev,
  233. unsigned long *state)
  234. {
  235. *state = MLXREG_FAN_MAX_STATE;
  236. return 0;
  237. }
  238. static int mlxreg_fan_get_cur_state(struct thermal_cooling_device *cdev,
  239. unsigned long *state)
  240. {
  241. struct mlxreg_fan *fan = cdev->devdata;
  242. u32 regval;
  243. int err;
  244. err = regmap_read(fan->regmap, fan->pwm.reg, &regval);
  245. if (err) {
  246. dev_err(fan->dev, "Failed to query PWM duty\n");
  247. return err;
  248. }
  249. *state = MLXREG_FAN_PWM_DUTY2STATE(regval);
  250. return 0;
  251. }
  252. static int mlxreg_fan_set_cur_state(struct thermal_cooling_device *cdev,
  253. unsigned long state)
  254. {
  255. struct mlxreg_fan *fan = cdev->devdata;
  256. unsigned long cur_state;
  257. u32 regval;
  258. int i;
  259. int err;
  260. /*
  261. * Verify if this request is for changing allowed FAN dynamical
  262. * minimum. If it is - update cooling levels accordingly and update
  263. * state, if current state is below the newly requested minimum state.
  264. * For example, if current state is 5, and minimal state is to be
  265. * changed from 4 to 6, fan->cooling_levels[0 to 5] will be changed all
  266. * from 4 to 6. And state 5 (fan->cooling_levels[4]) should be
  267. * overwritten.
  268. */
  269. if (state >= MLXREG_FAN_SPEED_MIN && state <= MLXREG_FAN_SPEED_MAX) {
  270. state -= MLXREG_FAN_MAX_STATE;
  271. for (i = 0; i < state; i++)
  272. fan->cooling_levels[i] = state;
  273. for (i = state; i <= MLXREG_FAN_MAX_STATE; i++)
  274. fan->cooling_levels[i] = i;
  275. err = regmap_read(fan->regmap, fan->pwm.reg, &regval);
  276. if (err) {
  277. dev_err(fan->dev, "Failed to query PWM duty\n");
  278. return err;
  279. }
  280. cur_state = MLXREG_FAN_PWM_DUTY2STATE(regval);
  281. if (state < cur_state)
  282. return 0;
  283. state = cur_state;
  284. }
  285. if (state > MLXREG_FAN_MAX_STATE)
  286. return -EINVAL;
  287. /* Normalize the state to the valid speed range. */
  288. state = fan->cooling_levels[state];
  289. err = regmap_write(fan->regmap, fan->pwm.reg,
  290. MLXREG_FAN_PWM_STATE2DUTY(state));
  291. if (err) {
  292. dev_err(fan->dev, "Failed to write PWM duty\n");
  293. return err;
  294. }
  295. return 0;
  296. }
  297. static const struct thermal_cooling_device_ops mlxreg_fan_cooling_ops = {
  298. .get_max_state = mlxreg_fan_get_max_state,
  299. .get_cur_state = mlxreg_fan_get_cur_state,
  300. .set_cur_state = mlxreg_fan_set_cur_state,
  301. };
  302. static int mlxreg_fan_connect_verify(struct mlxreg_fan *fan,
  303. struct mlxreg_core_data *data)
  304. {
  305. u32 regval;
  306. int err;
  307. err = regmap_read(fan->regmap, data->capability, &regval);
  308. if (err) {
  309. dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
  310. data->capability);
  311. return err;
  312. }
  313. return !!(regval & data->bit);
  314. }
  315. static int mlxreg_fan_speed_divider_get(struct mlxreg_fan *fan,
  316. struct mlxreg_core_data *data)
  317. {
  318. u32 regval;
  319. int err;
  320. err = regmap_read(fan->regmap, data->capability, &regval);
  321. if (err) {
  322. dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
  323. data->capability);
  324. return err;
  325. }
  326. /*
  327. * Set divider value according to the capability register, in case it
  328. * contains valid value. Otherwise use default value. The purpose of
  329. * this validation is to protect against the old hardware, in which
  330. * this register can return zero.
  331. */
  332. if (regval > 0 && regval <= MLXREG_FAN_TACHO_DIV_SCALE_MAX)
  333. fan->divider = regval * MLXREG_FAN_TACHO_DIV_MIN;
  334. return 0;
  335. }
  336. static int mlxreg_fan_config(struct mlxreg_fan *fan,
  337. struct mlxreg_core_platform_data *pdata)
  338. {
  339. struct mlxreg_core_data *data = pdata->data;
  340. bool configured = false;
  341. int tacho_num = 0, i;
  342. int err;
  343. fan->samples = MLXREG_FAN_TACHO_SAMPLES_PER_PULSE_DEF;
  344. fan->divider = MLXREG_FAN_TACHO_DIV_DEF;
  345. for (i = 0; i < pdata->counter; i++, data++) {
  346. if (strnstr(data->label, "tacho", sizeof(data->label))) {
  347. if (tacho_num == MLXREG_FAN_MAX_TACHO) {
  348. dev_err(fan->dev, "too many tacho entries: %s\n",
  349. data->label);
  350. return -EINVAL;
  351. }
  352. if (data->capability) {
  353. err = mlxreg_fan_connect_verify(fan, data);
  354. if (err < 0)
  355. return err;
  356. else if (!err) {
  357. tacho_num++;
  358. continue;
  359. }
  360. }
  361. fan->tacho[tacho_num].reg = data->reg;
  362. fan->tacho[tacho_num].mask = data->mask;
  363. fan->tacho[tacho_num++].connected = true;
  364. } else if (strnstr(data->label, "pwm", sizeof(data->label))) {
  365. if (fan->pwm.connected) {
  366. dev_err(fan->dev, "duplicate pwm entry: %s\n",
  367. data->label);
  368. return -EINVAL;
  369. }
  370. fan->pwm.reg = data->reg;
  371. fan->pwm.connected = true;
  372. } else if (strnstr(data->label, "conf", sizeof(data->label))) {
  373. if (configured) {
  374. dev_err(fan->dev, "duplicate conf entry: %s\n",
  375. data->label);
  376. return -EINVAL;
  377. }
  378. /* Validate that conf parameters are not zeros. */
  379. if (!data->mask && !data->bit && !data->capability) {
  380. dev_err(fan->dev, "invalid conf entry params: %s\n",
  381. data->label);
  382. return -EINVAL;
  383. }
  384. if (data->capability) {
  385. err = mlxreg_fan_speed_divider_get(fan, data);
  386. if (err)
  387. return err;
  388. } else {
  389. if (data->mask)
  390. fan->samples = data->mask;
  391. if (data->bit)
  392. fan->divider = data->bit;
  393. }
  394. configured = true;
  395. } else {
  396. dev_err(fan->dev, "invalid label: %s\n", data->label);
  397. return -EINVAL;
  398. }
  399. }
  400. /* Init cooling levels per PWM state. */
  401. for (i = 0; i < MLXREG_FAN_SPEED_MIN_LEVEL; i++)
  402. fan->cooling_levels[i] = MLXREG_FAN_SPEED_MIN_LEVEL;
  403. for (i = MLXREG_FAN_SPEED_MIN_LEVEL; i <= MLXREG_FAN_MAX_STATE; i++)
  404. fan->cooling_levels[i] = i;
  405. return 0;
  406. }
  407. static int mlxreg_fan_probe(struct platform_device *pdev)
  408. {
  409. struct mlxreg_core_platform_data *pdata;
  410. struct device *dev = &pdev->dev;
  411. struct mlxreg_fan *fan;
  412. struct device *hwm;
  413. int err;
  414. pdata = dev_get_platdata(dev);
  415. if (!pdata) {
  416. dev_err(dev, "Failed to get platform data.\n");
  417. return -EINVAL;
  418. }
  419. fan = devm_kzalloc(dev, sizeof(*fan), GFP_KERNEL);
  420. if (!fan)
  421. return -ENOMEM;
  422. fan->dev = dev;
  423. fan->regmap = pdata->regmap;
  424. err = mlxreg_fan_config(fan, pdata);
  425. if (err)
  426. return err;
  427. hwm = devm_hwmon_device_register_with_info(dev, "mlxreg_fan",
  428. fan,
  429. &mlxreg_fan_hwmon_chip_info,
  430. NULL);
  431. if (IS_ERR(hwm)) {
  432. dev_err(dev, "Failed to register hwmon device\n");
  433. return PTR_ERR(hwm);
  434. }
  435. if (IS_REACHABLE(CONFIG_THERMAL)) {
  436. fan->cdev = devm_thermal_of_cooling_device_register(dev,
  437. NULL, "mlxreg_fan", fan, &mlxreg_fan_cooling_ops);
  438. if (IS_ERR(fan->cdev)) {
  439. dev_err(dev, "Failed to register cooling device\n");
  440. return PTR_ERR(fan->cdev);
  441. }
  442. }
  443. return 0;
  444. }
  445. static struct platform_driver mlxreg_fan_driver = {
  446. .driver = {
  447. .name = "mlxreg-fan",
  448. },
  449. .probe = mlxreg_fan_probe,
  450. };
  451. module_platform_driver(mlxreg_fan_driver);
  452. MODULE_AUTHOR("Vadim Pasternak <vadimp@mellanox.com>");
  453. MODULE_DESCRIPTION("Mellanox FAN driver");
  454. MODULE_LICENSE("GPL");
  455. MODULE_ALIAS("platform:mlxreg-fan");