/Modules/_decimal/libmpdec/literature/umodarith.lisp
https://github.com/albertz/CPython · Lisp · 692 lines · 502 code · 109 blank · 81 comment · 0 complexity · b5884b990c57a48efc9a9dda3aa82221 MD5 · raw file
- ;
- ; Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
- ;
- ; Redistribution and use in source and binary forms, with or without
- ; modification, are permitted provided that the following conditions
- ; are met:
- ;
- ; 1. Redistributions of source code must retain the above copyright
- ; notice, this list of conditions and the following disclaimer.
- ;
- ; 2. Redistributions in binary form must reproduce the above copyright
- ; notice, this list of conditions and the following disclaimer in the
- ; documentation and/or other materials provided with the distribution.
- ;
- ; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- ; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- ; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- ; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- ; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- ; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- ; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- ; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- ; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- ; SUCH DAMAGE.
- ;
- (in-package "ACL2")
- (include-book "arithmetic/top-with-meta" :dir :system)
- (include-book "arithmetic-2/floor-mod/floor-mod" :dir :system)
- ;; =====================================================================
- ;; Proofs for several functions in umodarith.h
- ;; =====================================================================
- ;; =====================================================================
- ;; Helper theorems
- ;; =====================================================================
- (defthm elim-mod-m<x<2*m
- (implies (and (<= m x)
- (< x (* 2 m))
- (rationalp x) (rationalp m))
- (equal (mod x m)
- (+ x (- m)))))
- (defthm modaux-1a
- (implies (and (< x m) (< 0 x) (< 0 m)
- (rationalp x) (rationalp m))
- (equal (mod (- x) m)
- (+ (- x) m))))
- (defthm modaux-1b
- (implies (and (< (- x) m) (< x 0) (< 0 m)
- (rationalp x) (rationalp m))
- (equal (mod x m)
- (+ x m)))
- :hints (("Goal" :use ((:instance modaux-1a
- (x (- x)))))))
- (defthm modaux-1c
- (implies (and (< x m) (< 0 x) (< 0 m)
- (rationalp x) (rationalp m))
- (equal (mod x m)
- x)))
- (defthm modaux-2a
- (implies (and (< 0 b) (< b m)
- (natp x) (natp b) (natp m)
- (< (mod (+ b x) m) b))
- (equal (mod (+ (- m) b x) m)
- (+ (- m) b (mod x m)))))
- (defthm modaux-2b
- (implies (and (< 0 b) (< b m)
- (natp x) (natp b) (natp m)
- (< (mod (+ b x) m) b))
- (equal (mod (+ b x) m)
- (+ (- m) b (mod x m))))
- :hints (("Goal" :use (modaux-2a))))
- (defthm linear-mod-1
- (implies (and (< x m) (< b m)
- (natp x) (natp b)
- (rationalp m))
- (equal (< x (mod (+ (- b) x) m))
- (< x b)))
- :hints (("Goal" :use ((:instance modaux-1a
- (x (+ b (- x))))))))
- (defthm linear-mod-2
- (implies (and (< 0 b) (< b m)
- (natp x) (natp b)
- (natp m))
- (equal (< (mod x m)
- (mod (+ (- b) x) m))
- (< (mod x m) b))))
- (defthm linear-mod-3
- (implies (and (< x m) (< b m)
- (natp x) (natp b)
- (rationalp m))
- (equal (<= b (mod (+ b x) m))
- (< (+ b x) m)))
- :hints (("Goal" :use ((:instance elim-mod-m<x<2*m
- (x (+ b x)))))))
- (defthm modaux-2c
- (implies (and (< 0 b) (< b m)
- (natp x) (natp b) (natp m)
- (<= b (mod (+ b x) m)))
- (equal (mod (+ b x) m)
- (+ b (mod x m))))
- :hints (("Subgoal *1/8''" :use (linear-mod-3))))
- (defthmd modaux-2d
- (implies (and (< x m) (< 0 x) (< 0 m)
- (< (- m) b) (< b 0) (rationalp m)
- (<= x (mod (+ b x) m))
- (rationalp x) (rationalp b))
- (equal (+ (- m) (mod (+ b x) m))
- (+ b x)))
- :hints (("Goal" :cases ((<= 0 (+ b x))))
- ("Subgoal 2'" :use ((:instance modaux-1b
- (x (+ b x)))))))
- (defthm mod-m-b
- (implies (and (< 0 x) (< 0 b) (< 0 m)
- (< x b) (< b m)
- (natp x) (natp b) (natp m))
- (equal (mod (+ (mod (- x) m) b) m)
- (mod (- x) b))))
- ;; =====================================================================
- ;; addmod, submod
- ;; =====================================================================
- (defun addmod (a b m base)
- (let* ((s (mod (+ a b) base))
- (s (if (< s a) (mod (- s m) base) s))
- (s (if (>= s m) (mod (- s m) base) s)))
- s))
- (defthmd addmod-correct
- (implies (and (< 0 m) (< m base)
- (< a m) (<= b m)
- (natp m) (natp base)
- (natp a) (natp b))
- (equal (addmod a b m base)
- (mod (+ a b) m)))
- :hints (("Goal" :cases ((<= base (+ a b))))
- ("Subgoal 2.1'" :use ((:instance elim-mod-m<x<2*m
- (x (+ a b)))))))
- (defun submod (a b m base)
- (let* ((d (mod (- a b) base))
- (d (if (< a d) (mod (+ d m) base) d)))
- d))
- (defthmd submod-aux1
- (implies (and (< a (mod (+ a (- b)) base))
- (< 0 base) (< a base) (<= b base)
- (natp base) (natp a) (natp b))
- (< a b))
- :rule-classes :forward-chaining)
- (defthmd submod-aux2
- (implies (and (<= (mod (+ a (- b)) base) a)
- (< 0 base) (< a base) (< b base)
- (natp base) (natp a) (natp b))
- (<= b a))
- :rule-classes :forward-chaining)
- (defthmd submod-correct
- (implies (and (< 0 m) (< m base)
- (< a m) (<= b m)
- (natp m) (natp base)
- (natp a) (natp b))
- (equal (submod a b m base)
- (mod (- a b) m)))
- :hints (("Goal" :cases ((<= base (+ a b))))
- ("Subgoal 2.2" :use ((:instance submod-aux1)))
- ("Subgoal 2.2'''" :cases ((and (< 0 (+ a (- b) m))
- (< (+ a (- b) m) m))))
- ("Subgoal 2.1" :use ((:instance submod-aux2)))
- ("Subgoal 1.2" :use ((:instance submod-aux1)))
- ("Subgoal 1.1" :use ((:instance submod-aux2)))))
- (defun submod-2 (a b m base)
- (let* ((d (mod (- a b) base))
- (d (if (< a b) (mod (+ d m) base) d)))
- d))
- (defthm submod-2-correct
- (implies (and (< 0 m) (< m base)
- (< a m) (<= b m)
- (natp m) (natp base)
- (natp a) (natp b))
- (equal (submod-2 a b m base)
- (mod (- a b) m)))
- :hints (("Subgoal 2'" :cases ((and (< 0 (+ a (- b) m))
- (< (+ a (- b) m) m))))))
- ;; =========================================================================
- ;; ext-submod is correct
- ;; =========================================================================
- ; a < 2*m, b < 2*m
- (defun ext-submod (a b m base)
- (let* ((a (if (>= a m) (- a m) a))
- (b (if (>= b m) (- b m) b))
- (d (mod (- a b) base))
- (d (if (< a b) (mod (+ d m) base) d)))
- d))
- ; a < 2*m, b < 2*m
- (defun ext-submod-2 (a b m base)
- (let* ((a (mod a m))
- (b (mod b m))
- (d (mod (- a b) base))
- (d (if (< a b) (mod (+ d m) base) d)))
- d))
- (defthmd ext-submod-ext-submod-2-equal
- (implies (and (< 0 m) (< m base)
- (< a (* 2 m)) (< b (* 2 m))
- (natp m) (natp base)
- (natp a) (natp b))
- (equal (ext-submod a b m base)
- (ext-submod-2 a b m base))))
- (defthmd ext-submod-2-correct
- (implies (and (< 0 m) (< m base)
- (< a (* 2 m)) (< b (* 2 m))
- (natp m) (natp base)
- (natp a) (natp b))
- (equal (ext-submod-2 a b m base)
- (mod (- a b) m))))
- ;; =========================================================================
- ;; dw-reduce is correct
- ;; =========================================================================
- (defun dw-reduce (hi lo m base)
- (let* ((r1 (mod hi m))
- (r2 (mod (+ (* r1 base) lo) m)))
- r2))
- (defthmd dw-reduce-correct
- (implies (and (< 0 m) (< m base)
- (< hi base) (< lo base)
- (natp m) (natp base)
- (natp hi) (natp lo))
- (equal (dw-reduce hi lo m base)
- (mod (+ (* hi base) lo) m))))
- (defthmd <=-multiply-both-sides-by-z
- (implies (and (rationalp x) (rationalp y)
- (< 0 z) (rationalp z))
- (equal (<= x y)
- (<= (* z x) (* z y)))))
- (defthmd dw-reduce-aux1
- (implies (and (< 0 m) (< m base)
- (natp m) (natp base)
- (< lo base) (natp lo)
- (< x m) (natp x))
- (< (+ lo (* base x)) (* base m)))
- :hints (("Goal" :cases ((<= (+ x 1) m)))
- ("Subgoal 1''" :cases ((<= (* base (+ x 1)) (* base m))))
- ("subgoal 1.2" :use ((:instance <=-multiply-both-sides-by-z
- (x (+ 1 x))
- (y m)
- (z base))))))
- (defthm dw-reduce-aux2
- (implies (and (< x (* base m))
- (< 0 m) (< m base)
- (natp m) (natp base) (natp x))
- (< (floor x m) base)))
- ;; This is the necessary condition for using _mpd_div_words().
- (defthmd dw-reduce-second-quotient-fits-in-single-word
- (implies (and (< 0 m) (< m base)
- (< hi base) (< lo base)
- (natp m) (natp base)
- (natp hi) (natp lo)
- (equal r1 (mod hi m)))
- (< (floor (+ (* r1 base) lo) m)
- base))
- :hints (("Goal" :cases ((< r1 m)))
- ("Subgoal 1''" :cases ((< (+ lo (* base (mod hi m))) (* base m))))
- ("Subgoal 1.2" :use ((:instance dw-reduce-aux1
- (x (mod hi m)))))))
- ;; =========================================================================
- ;; dw-submod is correct
- ;; =========================================================================
- (defun dw-submod (a hi lo m base)
- (let* ((r (dw-reduce hi lo m base))
- (d (mod (- a r) base))
- (d (if (< a r) (mod (+ d m) base) d)))
- d))
- (defthmd dw-submod-aux1
- (implies (and (natp a) (< 0 m) (natp m)
- (natp x) (equal r (mod x m)))
- (equal (mod (- a x) m)
- (mod (- a r) m))))
- (defthmd dw-submod-correct
- (implies (and (< 0 m) (< m base)
- (natp a) (< a m)
- (< hi base) (< lo base)
- (natp m) (natp base)
- (natp hi) (natp lo))
- (equal (dw-submod a hi lo m base)
- (mod (- a (+ (* base hi) lo)) m)))
- :hints (("Goal" :in-theory (disable dw-reduce)
- :use ((:instance dw-submod-aux1
- (x (+ lo (* base hi)))
- (r (dw-reduce hi lo m base)))
- (:instance dw-reduce-correct)))))
- ;; =========================================================================
- ;; ANSI C arithmetic for uint64_t
- ;; =========================================================================
- (defun add (a b)
- (mod (+ a b)
- (expt 2 64)))
- (defun sub (a b)
- (mod (- a b)
- (expt 2 64)))
- (defun << (w n)
- (mod (* w (expt 2 n))
- (expt 2 64)))
- (defun >> (w n)
- (floor w (expt 2 n)))
- ;; join upper and lower half of a double word, yielding a 128 bit number
- (defun join (hi lo)
- (+ (* (expt 2 64) hi) lo))
- ;; =============================================================================
- ;; Fast modular reduction
- ;; =============================================================================
- ;; These are the three primes used in the Number Theoretic Transform.
- ;; A fast modular reduction scheme exists for all of them.
- (defmacro p1 ()
- (+ (expt 2 64) (- (expt 2 32)) 1))
- (defmacro p2 ()
- (+ (expt 2 64) (- (expt 2 34)) 1))
- (defmacro p3 ()
- (+ (expt 2 64) (- (expt 2 40)) 1))
- ;; reduce the double word number hi*2**64 + lo (mod p1)
- (defun simple-mod-reduce-p1 (hi lo)
- (+ (* (expt 2 32) hi) (- hi) lo))
- ;; reduce the double word number hi*2**64 + lo (mod p2)
- (defun simple-mod-reduce-p2 (hi lo)
- (+ (* (expt 2 34) hi) (- hi) lo))
- ;; reduce the double word number hi*2**64 + lo (mod p3)
- (defun simple-mod-reduce-p3 (hi lo)
- (+ (* (expt 2 40) hi) (- hi) lo))
- ; ----------------------------------------------------------
- ; The modular reductions given above are correct
- ; ----------------------------------------------------------
- (defthmd congruence-p1-aux
- (equal (* (expt 2 64) hi)
- (+ (* (p1) hi)
- (* (expt 2 32) hi)
- (- hi))))
- (defthmd congruence-p2-aux
- (equal (* (expt 2 64) hi)
- (+ (* (p2) hi)
- (* (expt 2 34) hi)
- (- hi))))
- (defthmd congruence-p3-aux
- (equal (* (expt 2 64) hi)
- (+ (* (p3) hi)
- (* (expt 2 40) hi)
- (- hi))))
- (defthmd mod-augment
- (implies (and (rationalp x)
- (rationalp y)
- (rationalp m))
- (equal (mod (+ x y) m)
- (mod (+ x (mod y m)) m))))
- (defthmd simple-mod-reduce-p1-congruent
- (implies (and (integerp hi)
- (integerp lo))
- (equal (mod (simple-mod-reduce-p1 hi lo) (p1))
- (mod (join hi lo) (p1))))
- :hints (("Goal''" :use ((:instance congruence-p1-aux)
- (:instance mod-augment
- (m (p1))
- (x (+ (- hi) lo (* (expt 2 32) hi)))
- (y (* (p1) hi)))))))
- (defthmd simple-mod-reduce-p2-congruent
- (implies (and (integerp hi)
- (integerp lo))
- (equal (mod (simple-mod-reduce-p2 hi lo) (p2))
- (mod (join hi lo) (p2))))
- :hints (("Goal''" :use ((:instance congruence-p2-aux)
- (:instance mod-augment
- (m (p2))
- (x (+ (- hi) lo (* (expt 2 34) hi)))
- (y (* (p2) hi)))))))
- (defthmd simple-mod-reduce-p3-congruent
- (implies (and (integerp hi)
- (integerp lo))
- (equal (mod (simple-mod-reduce-p3 hi lo) (p3))
- (mod (join hi lo) (p3))))
- :hints (("Goal''" :use ((:instance congruence-p3-aux)
- (:instance mod-augment
- (m (p3))
- (x (+ (- hi) lo (* (expt 2 40) hi)))
- (y (* (p3) hi)))))))
- ; ---------------------------------------------------------------------
- ; We need a number less than 2*p, so that we can use the trick from
- ; elim-mod-m<x<2*m for the final reduction.
- ; For p1, two modular reductions are sufficient, for p2 and p3 three.
- ; ---------------------------------------------------------------------
- ;; p1: the first reduction is less than 2**96
- (defthmd simple-mod-reduce-p1-<-2**96
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p1 hi lo)
- (expt 2 96))))
- ;; p1: the second reduction is less than 2*p1
- (defthmd simple-mod-reduce-p1-<-2*p1
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (< (join hi lo) (expt 2 96))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p1 hi lo)
- (* 2 (p1)))))
- ;; p2: the first reduction is less than 2**98
- (defthmd simple-mod-reduce-p2-<-2**98
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p2 hi lo)
- (expt 2 98))))
- ;; p2: the second reduction is less than 2**69
- (defthmd simple-mod-reduce-p2-<-2*69
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (< (join hi lo) (expt 2 98))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p2 hi lo)
- (expt 2 69))))
- ;; p3: the third reduction is less than 2*p2
- (defthmd simple-mod-reduce-p2-<-2*p2
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (< (join hi lo) (expt 2 69))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p2 hi lo)
- (* 2 (p2)))))
- ;; p3: the first reduction is less than 2**104
- (defthmd simple-mod-reduce-p3-<-2**104
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p3 hi lo)
- (expt 2 104))))
- ;; p3: the second reduction is less than 2**81
- (defthmd simple-mod-reduce-p3-<-2**81
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (< (join hi lo) (expt 2 104))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p3 hi lo)
- (expt 2 81))))
- ;; p3: the third reduction is less than 2*p3
- (defthmd simple-mod-reduce-p3-<-2*p3
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (< (join hi lo) (expt 2 81))
- (natp hi) (natp lo))
- (< (simple-mod-reduce-p3 hi lo)
- (* 2 (p3)))))
- ; -------------------------------------------------------------------------
- ; The simple modular reductions, adapted for compiler friendly C
- ; -------------------------------------------------------------------------
- (defun mod-reduce-p1 (hi lo)
- (let* ((y hi)
- (x y)
- (hi (>> hi 32))
- (x (sub lo x))
- (hi (if (> x lo) (+ hi -1) hi))
- (y (<< y 32))
- (lo (add y x))
- (hi (if (< lo y) (+ hi 1) hi)))
- (+ (* hi (expt 2 64)) lo)))
- (defun mod-reduce-p2 (hi lo)
- (let* ((y hi)
- (x y)
- (hi (>> hi 30))
- (x (sub lo x))
- (hi (if (> x lo) (+ hi -1) hi))
- (y (<< y 34))
- (lo (add y x))
- (hi (if (< lo y) (+ hi 1) hi)))
- (+ (* hi (expt 2 64)) lo)))
- (defun mod-reduce-p3 (hi lo)
- (let* ((y hi)
- (x y)
- (hi (>> hi 24))
- (x (sub lo x))
- (hi (if (> x lo) (+ hi -1) hi))
- (y (<< y 40))
- (lo (add y x))
- (hi (if (< lo y) (+ hi 1) hi)))
- (+ (* hi (expt 2 64)) lo)))
- ; -------------------------------------------------------------------------
- ; The compiler friendly versions are equal to the simple versions
- ; -------------------------------------------------------------------------
- (defthm mod-reduce-aux1
- (implies (and (<= 0 a) (natp a) (natp m)
- (< (- m) b) (<= b 0)
- (integerp b)
- (< (mod (+ b a) m)
- (mod a m)))
- (equal (mod (+ b a) m)
- (+ b (mod a m))))
- :hints (("Subgoal 2" :use ((:instance modaux-1b
- (x (+ a b)))))))
- (defthm mod-reduce-aux2
- (implies (and (<= 0 a) (natp a) (natp m)
- (< b m) (natp b)
- (< (mod (+ b a) m)
- (mod a m)))
- (equal (+ m (mod (+ b a) m))
- (+ b (mod a m)))))
- (defthm mod-reduce-aux3
- (implies (and (< 0 a) (natp a) (natp m)
- (< (- m) b) (< b 0)
- (integerp b)
- (<= (mod a m)
- (mod (+ b a) m)))
- (equal (+ (- m) (mod (+ b a) m))
- (+ b (mod a m))))
- :hints (("Subgoal 1.2'" :use ((:instance modaux-1b
- (x b))))
- ("Subgoal 1''" :use ((:instance modaux-2d
- (x I))))))
- (defthm mod-reduce-aux4
- (implies (and (< 0 a) (natp a) (natp m)
- (< b m) (natp b)
- (<= (mod a m)
- (mod (+ b a) m)))
- (equal (mod (+ b a) m)
- (+ b (mod a m)))))
- (defthm mod-reduce-p1==simple-mod-reduce-p1
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (natp hi) (natp lo))
- (equal (mod-reduce-p1 hi lo)
- (simple-mod-reduce-p1 hi lo)))
- :hints (("Goal" :in-theory (disable expt)
- :cases ((< 0 hi)))
- ("Subgoal 1.2.2'" :use ((:instance mod-reduce-aux1
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 32) hi)))))
- ("Subgoal 1.2.1'" :use ((:instance mod-reduce-aux3
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 32) hi)))))
- ("Subgoal 1.1.2'" :use ((:instance mod-reduce-aux2
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 32) hi)))))
- ("Subgoal 1.1.1'" :use ((:instance mod-reduce-aux4
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 32) hi)))))))
- (defthm mod-reduce-p2==simple-mod-reduce-p2
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (natp hi) (natp lo))
- (equal (mod-reduce-p2 hi lo)
- (simple-mod-reduce-p2 hi lo)))
- :hints (("Goal" :cases ((< 0 hi)))
- ("Subgoal 1.2.2'" :use ((:instance mod-reduce-aux1
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 34) hi)))))
- ("Subgoal 1.2.1'" :use ((:instance mod-reduce-aux3
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 34) hi)))))
- ("Subgoal 1.1.2'" :use ((:instance mod-reduce-aux2
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 34) hi)))))
- ("Subgoal 1.1.1'" :use ((:instance mod-reduce-aux4
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 34) hi)))))))
- (defthm mod-reduce-p3==simple-mod-reduce-p3
- (implies (and (< hi (expt 2 64))
- (< lo (expt 2 64))
- (natp hi) (natp lo))
- (equal (mod-reduce-p3 hi lo)
- (simple-mod-reduce-p3 hi lo)))
- :hints (("Goal" :cases ((< 0 hi)))
- ("Subgoal 1.2.2'" :use ((:instance mod-reduce-aux1
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 40) hi)))))
- ("Subgoal 1.2.1'" :use ((:instance mod-reduce-aux3
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 40) hi)))))
- ("Subgoal 1.1.2'" :use ((:instance mod-reduce-aux2
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 40) hi)))))
- ("Subgoal 1.1.1'" :use ((:instance mod-reduce-aux4
- (m (expt 2 64))
- (b (+ (- HI) LO))
- (a (* (expt 2 40) hi)))))))