PageRenderTime 49ms CodeModel.GetById 19ms RepoModel.GetById 0ms app.codeStats 1ms

/net/ipv4/tcp_cubic.c

https://github.com/fopina/ZTE-Joe-Kernel-2.6.29
C | 473 lines | 296 code | 71 blank | 106 comment | 53 complexity | 35a4ddd5e3e8a4741308899806b096f8 MD5 | raw file
  1. /*
  2. * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
  3. * Home page:
  4. * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
  5. * This is from the implementation of CUBIC TCP in
  6. * Sangtae Ha, Injong Rhee and Lisong Xu,
  7. * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
  8. * in ACM SIGOPS Operating System Review, July 2008.
  9. * Available from:
  10. * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
  11. *
  12. * CUBIC integrates a new slow start algorithm, called HyStart.
  13. * The details of HyStart are presented in
  14. * Sangtae Ha and Injong Rhee,
  15. * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
  16. * Available from:
  17. * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
  18. *
  19. * All testing results are available from:
  20. * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
  21. *
  22. * Unless CUBIC is enabled and congestion window is large
  23. * this behaves the same as the original Reno.
  24. */
  25. #include <linux/mm.h>
  26. #include <linux/module.h>
  27. #include <linux/math64.h>
  28. #include <net/tcp.h>
  29. #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
  30. * max_cwnd = snd_cwnd * beta
  31. */
  32. #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
  33. /* Two methods of hybrid slow start */
  34. #define HYSTART_ACK_TRAIN 0x1
  35. #define HYSTART_DELAY 0x2
  36. /* Number of delay samples for detecting the increase of delay */
  37. #define HYSTART_MIN_SAMPLES 8
  38. #define HYSTART_DELAY_MIN (2U<<3)
  39. #define HYSTART_DELAY_MAX (16U<<3)
  40. #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
  41. static int fast_convergence __read_mostly = 1;
  42. static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
  43. static int initial_ssthresh __read_mostly;
  44. static int bic_scale __read_mostly = 41;
  45. static int tcp_friendliness __read_mostly = 1;
  46. static int hystart __read_mostly = 1;
  47. static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
  48. static int hystart_low_window __read_mostly = 16;
  49. static u32 cube_rtt_scale __read_mostly;
  50. static u32 beta_scale __read_mostly;
  51. static u64 cube_factor __read_mostly;
  52. /* Note parameters that are used for precomputing scale factors are read-only */
  53. module_param(fast_convergence, int, 0644);
  54. MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
  55. module_param(beta, int, 0644);
  56. MODULE_PARM_DESC(beta, "beta for multiplicative increase");
  57. module_param(initial_ssthresh, int, 0644);
  58. MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
  59. module_param(bic_scale, int, 0444);
  60. MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
  61. module_param(tcp_friendliness, int, 0644);
  62. MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
  63. module_param(hystart, int, 0644);
  64. MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
  65. module_param(hystart_detect, int, 0644);
  66. MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
  67. " 1: packet-train 2: delay 3: both packet-train and delay");
  68. module_param(hystart_low_window, int, 0644);
  69. MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
  70. /* BIC TCP Parameters */
  71. struct bictcp {
  72. u32 cnt; /* increase cwnd by 1 after ACKs */
  73. u32 last_max_cwnd; /* last maximum snd_cwnd */
  74. u32 loss_cwnd; /* congestion window at last loss */
  75. u32 last_cwnd; /* the last snd_cwnd */
  76. u32 last_time; /* time when updated last_cwnd */
  77. u32 bic_origin_point;/* origin point of bic function */
  78. u32 bic_K; /* time to origin point from the beginning of the current epoch */
  79. u32 delay_min; /* min delay */
  80. u32 epoch_start; /* beginning of an epoch */
  81. u32 ack_cnt; /* number of acks */
  82. u32 tcp_cwnd; /* estimated tcp cwnd */
  83. #define ACK_RATIO_SHIFT 4
  84. u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
  85. u8 sample_cnt; /* number of samples to decide curr_rtt */
  86. u8 found; /* the exit point is found? */
  87. u32 round_start; /* beginning of each round */
  88. u32 end_seq; /* end_seq of the round */
  89. u32 last_jiffies; /* last time when the ACK spacing is close */
  90. u32 curr_rtt; /* the minimum rtt of current round */
  91. };
  92. static inline void bictcp_reset(struct bictcp *ca)
  93. {
  94. ca->cnt = 0;
  95. ca->last_max_cwnd = 0;
  96. ca->loss_cwnd = 0;
  97. ca->last_cwnd = 0;
  98. ca->last_time = 0;
  99. ca->bic_origin_point = 0;
  100. ca->bic_K = 0;
  101. ca->delay_min = 0;
  102. ca->epoch_start = 0;
  103. ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
  104. ca->ack_cnt = 0;
  105. ca->tcp_cwnd = 0;
  106. ca->found = 0;
  107. }
  108. static inline void bictcp_hystart_reset(struct sock *sk)
  109. {
  110. struct tcp_sock *tp = tcp_sk(sk);
  111. struct bictcp *ca = inet_csk_ca(sk);
  112. ca->round_start = ca->last_jiffies = jiffies;
  113. ca->end_seq = tp->snd_nxt;
  114. ca->curr_rtt = 0;
  115. ca->sample_cnt = 0;
  116. }
  117. static void bictcp_init(struct sock *sk)
  118. {
  119. bictcp_reset(inet_csk_ca(sk));
  120. if (hystart)
  121. bictcp_hystart_reset(sk);
  122. if (!hystart && initial_ssthresh)
  123. tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
  124. }
  125. /* calculate the cubic root of x using a table lookup followed by one
  126. * Newton-Raphson iteration.
  127. * Avg err ~= 0.195%
  128. */
  129. static u32 cubic_root(u64 a)
  130. {
  131. u32 x, b, shift;
  132. /*
  133. * cbrt(x) MSB values for x MSB values in [0..63].
  134. * Precomputed then refined by hand - Willy Tarreau
  135. *
  136. * For x in [0..63],
  137. * v = cbrt(x << 18) - 1
  138. * cbrt(x) = (v[x] + 10) >> 6
  139. */
  140. static const u8 v[] = {
  141. /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
  142. /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
  143. /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
  144. /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
  145. /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
  146. /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
  147. /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
  148. /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
  149. };
  150. b = fls64(a);
  151. if (b < 7) {
  152. /* a in [0..63] */
  153. return ((u32)v[(u32)a] + 35) >> 6;
  154. }
  155. b = ((b * 84) >> 8) - 1;
  156. shift = (a >> (b * 3));
  157. x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
  158. /*
  159. * Newton-Raphson iteration
  160. * 2
  161. * x = ( 2 * x + a / x ) / 3
  162. * k+1 k k
  163. */
  164. x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
  165. x = ((x * 341) >> 10);
  166. return x;
  167. }
  168. /*
  169. * Compute congestion window to use.
  170. */
  171. static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
  172. {
  173. u64 offs;
  174. u32 delta, t, bic_target, max_cnt;
  175. ca->ack_cnt++; /* count the number of ACKs */
  176. if (ca->last_cwnd == cwnd &&
  177. (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
  178. return;
  179. ca->last_cwnd = cwnd;
  180. ca->last_time = tcp_time_stamp;
  181. if (ca->epoch_start == 0) {
  182. ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
  183. ca->ack_cnt = 1; /* start counting */
  184. ca->tcp_cwnd = cwnd; /* syn with cubic */
  185. if (ca->last_max_cwnd <= cwnd) {
  186. ca->bic_K = 0;
  187. ca->bic_origin_point = cwnd;
  188. } else {
  189. /* Compute new K based on
  190. * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
  191. */
  192. ca->bic_K = cubic_root(cube_factor
  193. * (ca->last_max_cwnd - cwnd));
  194. ca->bic_origin_point = ca->last_max_cwnd;
  195. }
  196. }
  197. /* cubic function - calc*/
  198. /* calculate c * time^3 / rtt,
  199. * while considering overflow in calculation of time^3
  200. * (so time^3 is done by using 64 bit)
  201. * and without the support of division of 64bit numbers
  202. * (so all divisions are done by using 32 bit)
  203. * also NOTE the unit of those veriables
  204. * time = (t - K) / 2^bictcp_HZ
  205. * c = bic_scale >> 10
  206. * rtt = (srtt >> 3) / HZ
  207. * !!! The following code does not have overflow problems,
  208. * if the cwnd < 1 million packets !!!
  209. */
  210. /* change the unit from HZ to bictcp_HZ */
  211. t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)
  212. << BICTCP_HZ) / HZ;
  213. if (t < ca->bic_K) /* t - K */
  214. offs = ca->bic_K - t;
  215. else
  216. offs = t - ca->bic_K;
  217. /* c/rtt * (t-K)^3 */
  218. delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
  219. if (t < ca->bic_K) /* below origin*/
  220. bic_target = ca->bic_origin_point - delta;
  221. else /* above origin*/
  222. bic_target = ca->bic_origin_point + delta;
  223. /* cubic function - calc bictcp_cnt*/
  224. if (bic_target > cwnd) {
  225. ca->cnt = cwnd / (bic_target - cwnd);
  226. } else {
  227. ca->cnt = 100 * cwnd; /* very small increment*/
  228. }
  229. /* TCP Friendly */
  230. if (tcp_friendliness) {
  231. u32 scale = beta_scale;
  232. delta = (cwnd * scale) >> 3;
  233. while (ca->ack_cnt > delta) { /* update tcp cwnd */
  234. ca->ack_cnt -= delta;
  235. ca->tcp_cwnd++;
  236. }
  237. if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
  238. delta = ca->tcp_cwnd - cwnd;
  239. max_cnt = cwnd / delta;
  240. if (ca->cnt > max_cnt)
  241. ca->cnt = max_cnt;
  242. }
  243. }
  244. ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
  245. if (ca->cnt == 0) /* cannot be zero */
  246. ca->cnt = 1;
  247. }
  248. static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  249. {
  250. struct tcp_sock *tp = tcp_sk(sk);
  251. struct bictcp *ca = inet_csk_ca(sk);
  252. if (!tcp_is_cwnd_limited(sk, in_flight))
  253. return;
  254. if (tp->snd_cwnd <= tp->snd_ssthresh) {
  255. if (hystart && after(ack, ca->end_seq))
  256. bictcp_hystart_reset(sk);
  257. tcp_slow_start(tp);
  258. } else {
  259. bictcp_update(ca, tp->snd_cwnd);
  260. /* In dangerous area, increase slowly.
  261. * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
  262. */
  263. if (tp->snd_cwnd_cnt >= ca->cnt) {
  264. if (tp->snd_cwnd < tp->snd_cwnd_clamp)
  265. tp->snd_cwnd++;
  266. tp->snd_cwnd_cnt = 0;
  267. } else
  268. tp->snd_cwnd_cnt++;
  269. }
  270. }
  271. static u32 bictcp_recalc_ssthresh(struct sock *sk)
  272. {
  273. const struct tcp_sock *tp = tcp_sk(sk);
  274. struct bictcp *ca = inet_csk_ca(sk);
  275. ca->epoch_start = 0; /* end of epoch */
  276. /* Wmax and fast convergence */
  277. if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
  278. ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
  279. / (2 * BICTCP_BETA_SCALE);
  280. else
  281. ca->last_max_cwnd = tp->snd_cwnd;
  282. ca->loss_cwnd = tp->snd_cwnd;
  283. return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
  284. }
  285. static u32 bictcp_undo_cwnd(struct sock *sk)
  286. {
  287. struct bictcp *ca = inet_csk_ca(sk);
  288. return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
  289. }
  290. static void bictcp_state(struct sock *sk, u8 new_state)
  291. {
  292. if (new_state == TCP_CA_Loss) {
  293. bictcp_reset(inet_csk_ca(sk));
  294. bictcp_hystart_reset(sk);
  295. }
  296. }
  297. static void hystart_update(struct sock *sk, u32 delay)
  298. {
  299. struct tcp_sock *tp = tcp_sk(sk);
  300. struct bictcp *ca = inet_csk_ca(sk);
  301. if (!(ca->found & hystart_detect)) {
  302. u32 curr_jiffies = jiffies;
  303. /* first detection parameter - ack-train detection */
  304. if (curr_jiffies - ca->last_jiffies <= msecs_to_jiffies(2)) {
  305. ca->last_jiffies = curr_jiffies;
  306. if (curr_jiffies - ca->round_start >= ca->delay_min>>4)
  307. ca->found |= HYSTART_ACK_TRAIN;
  308. }
  309. /* obtain the minimum delay of more than sampling packets */
  310. if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
  311. if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
  312. ca->curr_rtt = delay;
  313. ca->sample_cnt++;
  314. } else {
  315. if (ca->curr_rtt > ca->delay_min +
  316. HYSTART_DELAY_THRESH(ca->delay_min>>4))
  317. ca->found |= HYSTART_DELAY;
  318. }
  319. /*
  320. * Either one of two conditions are met,
  321. * we exit from slow start immediately.
  322. */
  323. if (ca->found & hystart_detect)
  324. tp->snd_ssthresh = tp->snd_cwnd;
  325. }
  326. }
  327. /* Track delayed acknowledgment ratio using sliding window
  328. * ratio = (15*ratio + sample) / 16
  329. */
  330. static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
  331. {
  332. const struct inet_connection_sock *icsk = inet_csk(sk);
  333. const struct tcp_sock *tp = tcp_sk(sk);
  334. struct bictcp *ca = inet_csk_ca(sk);
  335. u32 delay;
  336. if (icsk->icsk_ca_state == TCP_CA_Open) {
  337. cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
  338. ca->delayed_ack += cnt;
  339. }
  340. /* Some calls are for duplicates without timetamps */
  341. if (rtt_us < 0)
  342. return;
  343. /* Discard delay samples right after fast recovery */
  344. if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
  345. return;
  346. delay = usecs_to_jiffies(rtt_us) << 3;
  347. if (delay == 0)
  348. delay = 1;
  349. /* first time call or link delay decreases */
  350. if (ca->delay_min == 0 || ca->delay_min > delay)
  351. ca->delay_min = delay;
  352. /* hystart triggers when cwnd is larger than some threshold */
  353. if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
  354. tp->snd_cwnd >= hystart_low_window)
  355. hystart_update(sk, delay);
  356. }
  357. static struct tcp_congestion_ops cubictcp = {
  358. .init = bictcp_init,
  359. .ssthresh = bictcp_recalc_ssthresh,
  360. .cong_avoid = bictcp_cong_avoid,
  361. .set_state = bictcp_state,
  362. .undo_cwnd = bictcp_undo_cwnd,
  363. .pkts_acked = bictcp_acked,
  364. .owner = THIS_MODULE,
  365. .name = "cubic",
  366. };
  367. static int __init cubictcp_register(void)
  368. {
  369. BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
  370. /* Precompute a bunch of the scaling factors that are used per-packet
  371. * based on SRTT of 100ms
  372. */
  373. beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
  374. cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
  375. /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
  376. * so K = cubic_root( (wmax-cwnd)*rtt/c )
  377. * the unit of K is bictcp_HZ=2^10, not HZ
  378. *
  379. * c = bic_scale >> 10
  380. * rtt = 100ms
  381. *
  382. * the following code has been designed and tested for
  383. * cwnd < 1 million packets
  384. * RTT < 100 seconds
  385. * HZ < 1,000,00 (corresponding to 10 nano-second)
  386. */
  387. /* 1/c * 2^2*bictcp_HZ * srtt */
  388. cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
  389. /* divide by bic_scale and by constant Srtt (100ms) */
  390. do_div(cube_factor, bic_scale * 10);
  391. return tcp_register_congestion_control(&cubictcp);
  392. }
  393. static void __exit cubictcp_unregister(void)
  394. {
  395. tcp_unregister_congestion_control(&cubictcp);
  396. }
  397. module_init(cubictcp_register);
  398. module_exit(cubictcp_unregister);
  399. MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
  400. MODULE_LICENSE("GPL");
  401. MODULE_DESCRIPTION("CUBIC TCP");
  402. MODULE_VERSION("2.3");