PageRenderTime 40ms CodeModel.GetById 11ms RepoModel.GetById 0ms app.codeStats 0ms

/neo/renderer/jpeg-6/jcdctmgr.c

https://bitbucket.org/festevezga/doom3.gpl
C | 388 lines | 259 code | 39 blank | 90 comment | 31 complexity | a0e281bd4376ddcb58aecfb2c186fee6 MD5 | raw file
  1. /*
  2. * jcdctmgr.c
  3. *
  4. * Copyright (C) 1994-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains the forward-DCT management logic.
  9. * This code selects a particular DCT implementation to be used,
  10. * and it performs related housekeeping chores including coefficient
  11. * quantization.
  12. */
  13. #define JPEG_INTERNALS
  14. #include "jinclude.h"
  15. #include "jpeglib.h"
  16. #include "jdct.h" /* Private declarations for DCT subsystem */
  17. /* Private subobject for this module */
  18. typedef struct {
  19. struct jpeg_forward_dct pub; /* public fields */
  20. /* Pointer to the DCT routine actually in use */
  21. forward_DCT_method_ptr do_dct;
  22. /* The actual post-DCT divisors --- not identical to the quant table
  23. * entries, because of scaling (especially for an unnormalized DCT).
  24. * Each table is given in normal array order; note that this must
  25. * be converted from the zigzag order of the quantization tables.
  26. */
  27. DCTELEM * divisors[NUM_QUANT_TBLS];
  28. #ifdef DCT_FLOAT_SUPPORTED
  29. /* Same as above for the floating-point case. */
  30. float_DCT_method_ptr do_float_dct;
  31. FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
  32. #endif
  33. } my_fdct_controller;
  34. typedef my_fdct_controller * my_fdct_ptr;
  35. /*
  36. * Initialize for a processing pass.
  37. * Verify that all referenced Q-tables are present, and set up
  38. * the divisor table for each one.
  39. * In the current implementation, DCT of all components is done during
  40. * the first pass, even if only some components will be output in the
  41. * first scan. Hence all components should be examined here.
  42. */
  43. METHODDEF void
  44. start_pass_fdctmgr (j_compress_ptr cinfo)
  45. {
  46. my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  47. int ci, qtblno, i;
  48. jpeg_component_info *compptr;
  49. JQUANT_TBL * qtbl;
  50. //DCTELEM * dtbl;
  51. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  52. ci++, compptr++) {
  53. qtblno = compptr->quant_tbl_no;
  54. /* Make sure specified quantization table is present */
  55. if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
  56. cinfo->quant_tbl_ptrs[qtblno] == NULL)
  57. ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
  58. qtbl = cinfo->quant_tbl_ptrs[qtblno];
  59. /* Compute divisors for this quant table */
  60. /* We may do this more than once for same table, but it's not a big deal */
  61. switch (cinfo->dct_method) {
  62. #ifdef DCT_ISLOW_SUPPORTED
  63. case JDCT_ISLOW:
  64. /* For LL&M IDCT method, divisors are equal to raw quantization
  65. * coefficients multiplied by 8 (to counteract scaling).
  66. */
  67. if (fdct->divisors[qtblno] == NULL) {
  68. fdct->divisors[qtblno] = (DCTELEM *)
  69. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  70. DCTSIZE2 * SIZEOF(DCTELEM));
  71. }
  72. dtbl = fdct->divisors[qtblno];
  73. for (i = 0; i < DCTSIZE2; i++) {
  74. dtbl[i] = ((DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]]) << 3;
  75. }
  76. break;
  77. #endif
  78. #ifdef DCT_IFAST_SUPPORTED
  79. case JDCT_IFAST:
  80. {
  81. /* For AA&N IDCT method, divisors are equal to quantization
  82. * coefficients scaled by scalefactor[row]*scalefactor[col], where
  83. * scalefactor[0] = 1
  84. * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
  85. * We apply a further scale factor of 8.
  86. */
  87. #define CONST_BITS 14
  88. static const INT16 aanscales[DCTSIZE2] = {
  89. /* precomputed values scaled up by 14 bits: in natural order */
  90. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  91. 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
  92. 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
  93. 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
  94. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  95. 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
  96. 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
  97. 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
  98. };
  99. SHIFT_TEMPS
  100. if (fdct->divisors[qtblno] == NULL) {
  101. fdct->divisors[qtblno] = (DCTELEM *)
  102. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  103. DCTSIZE2 * SIZEOF(DCTELEM));
  104. }
  105. dtbl = fdct->divisors[qtblno];
  106. for (i = 0; i < DCTSIZE2; i++) {
  107. dtbl[i] = (DCTELEM)
  108. DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]],
  109. (INT32) aanscales[i]),
  110. CONST_BITS-3);
  111. }
  112. }
  113. break;
  114. #endif
  115. #ifdef DCT_FLOAT_SUPPORTED
  116. case JDCT_FLOAT:
  117. {
  118. /* For float AA&N IDCT method, divisors are equal to quantization
  119. * coefficients scaled by scalefactor[row]*scalefactor[col], where
  120. * scalefactor[0] = 1
  121. * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
  122. * We apply a further scale factor of 8.
  123. * What's actually stored is 1/divisor so that the inner loop can
  124. * use a multiplication rather than a division.
  125. */
  126. FAST_FLOAT * fdtbl;
  127. int row, col;
  128. static const double aanscalefactor[DCTSIZE] = {
  129. 1.0, 1.387039845, 1.306562965, 1.175875602,
  130. 1.0, 0.785694958, 0.541196100, 0.275899379
  131. };
  132. if (fdct->float_divisors[qtblno] == NULL) {
  133. fdct->float_divisors[qtblno] = (FAST_FLOAT *)
  134. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  135. DCTSIZE2 * SIZEOF(FAST_FLOAT));
  136. }
  137. fdtbl = fdct->float_divisors[qtblno];
  138. i = 0;
  139. for (row = 0; row < DCTSIZE; row++) {
  140. for (col = 0; col < DCTSIZE; col++) {
  141. fdtbl[i] = (FAST_FLOAT)
  142. (1.0 / (((double) qtbl->quantval[jpeg_zigzag_order[i]] *
  143. aanscalefactor[row] * aanscalefactor[col] * 8.0)));
  144. i++;
  145. }
  146. }
  147. }
  148. break;
  149. #endif
  150. default:
  151. ERREXIT(cinfo, JERR_NOT_COMPILED);
  152. break;
  153. }
  154. }
  155. }
  156. /*
  157. * Perform forward DCT on one or more blocks of a component.
  158. *
  159. * The input samples are taken from the sample_data[] array starting at
  160. * position start_row/start_col, and moving to the right for any additional
  161. * blocks. The quantized coefficients are returned in coef_blocks[].
  162. */
  163. METHODDEF void
  164. forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
  165. JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
  166. JDIMENSION start_row, JDIMENSION start_col,
  167. JDIMENSION num_blocks)
  168. /* This version is used for integer DCT implementations. */
  169. {
  170. /* This routine is heavily used, so it's worth coding it tightly. */
  171. my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  172. forward_DCT_method_ptr do_dct = fdct->do_dct;
  173. DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
  174. DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
  175. JDIMENSION bi;
  176. sample_data += start_row; /* fold in the vertical offset once */
  177. for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
  178. /* Load data into workspace, applying unsigned->signed conversion */
  179. { register DCTELEM *workspaceptr;
  180. register JSAMPROW elemptr;
  181. register int elemr;
  182. workspaceptr = workspace;
  183. for (elemr = 0; elemr < DCTSIZE; elemr++) {
  184. elemptr = sample_data[elemr] + start_col;
  185. #if DCTSIZE == 8 /* unroll the inner loop */
  186. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  187. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  188. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  189. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  190. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  191. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  192. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  193. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  194. #else
  195. { register int elemc;
  196. for (elemc = DCTSIZE; elemc > 0; elemc--) {
  197. *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  198. }
  199. }
  200. #endif
  201. }
  202. }
  203. /* Perform the DCT */
  204. (*do_dct) (workspace);
  205. /* Quantize/descale the coefficients, and store into coef_blocks[] */
  206. { register DCTELEM temp, qval;
  207. register int i;
  208. register JCOEFPTR output_ptr = coef_blocks[bi];
  209. for (i = 0; i < DCTSIZE2; i++) {
  210. qval = divisors[i];
  211. temp = workspace[i];
  212. /* Divide the coefficient value by qval, ensuring proper rounding.
  213. * Since C does not specify the direction of rounding for negative
  214. * quotients, we have to force the dividend positive for portability.
  215. *
  216. * In most files, at least half of the output values will be zero
  217. * (at default quantization settings, more like three-quarters...)
  218. * so we should ensure that this case is fast. On many machines,
  219. * a comparison is enough cheaper than a divide to make a special test
  220. * a win. Since both inputs will be nonnegative, we need only test
  221. * for a < b to discover whether a/b is 0.
  222. * If your machine's division is fast enough, define FAST_DIVIDE.
  223. */
  224. #ifdef FAST_DIVIDE
  225. #define DIVIDE_BY(a,b) a /= b
  226. #else
  227. #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
  228. #endif
  229. if (temp < 0) {
  230. temp = -temp;
  231. temp += qval>>1; /* for rounding */
  232. DIVIDE_BY(temp, qval);
  233. temp = -temp;
  234. } else {
  235. temp += qval>>1; /* for rounding */
  236. DIVIDE_BY(temp, qval);
  237. }
  238. output_ptr[i] = (JCOEF) temp;
  239. }
  240. }
  241. }
  242. }
  243. #ifdef DCT_FLOAT_SUPPORTED
  244. METHODDEF void
  245. forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
  246. JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
  247. JDIMENSION start_row, JDIMENSION start_col,
  248. JDIMENSION num_blocks)
  249. /* This version is used for floating-point DCT implementations. */
  250. {
  251. /* This routine is heavily used, so it's worth coding it tightly. */
  252. my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  253. float_DCT_method_ptr do_dct = fdct->do_float_dct;
  254. FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
  255. FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
  256. JDIMENSION bi;
  257. sample_data += start_row; /* fold in the vertical offset once */
  258. for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
  259. /* Load data into workspace, applying unsigned->signed conversion */
  260. { register FAST_FLOAT *workspaceptr;
  261. register JSAMPROW elemptr;
  262. register int elemr;
  263. workspaceptr = workspace;
  264. for (elemr = 0; elemr < DCTSIZE; elemr++) {
  265. elemptr = sample_data[elemr] + start_col;
  266. #if DCTSIZE == 8 /* unroll the inner loop */
  267. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  268. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  269. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  270. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  271. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  272. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  273. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  274. *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  275. #else
  276. { register int elemc;
  277. for (elemc = DCTSIZE; elemc > 0; elemc--) {
  278. *workspaceptr++ = (FAST_FLOAT)
  279. (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  280. }
  281. }
  282. #endif
  283. }
  284. }
  285. /* Perform the DCT */
  286. (*do_dct) (workspace);
  287. /* Quantize/descale the coefficients, and store into coef_blocks[] */
  288. { register FAST_FLOAT temp;
  289. register int i;
  290. register JCOEFPTR output_ptr = coef_blocks[bi];
  291. for (i = 0; i < DCTSIZE2; i++) {
  292. /* Apply the quantization and scaling factor */
  293. temp = workspace[i] * divisors[i];
  294. /* Round to nearest integer.
  295. * Since C does not specify the direction of rounding for negative
  296. * quotients, we have to force the dividend positive for portability.
  297. * The maximum coefficient size is +-16K (for 12-bit data), so this
  298. * code should work for either 16-bit or 32-bit ints.
  299. */
  300. output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
  301. }
  302. }
  303. }
  304. }
  305. #endif /* DCT_FLOAT_SUPPORTED */
  306. /*
  307. * Initialize FDCT manager.
  308. */
  309. GLOBAL void
  310. jinit_forward_dct (j_compress_ptr cinfo)
  311. {
  312. my_fdct_ptr fdct;
  313. int i;
  314. fdct = (my_fdct_ptr)
  315. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  316. SIZEOF(my_fdct_controller));
  317. cinfo->fdct = (struct jpeg_forward_dct *) fdct;
  318. fdct->pub.start_pass = start_pass_fdctmgr;
  319. switch (cinfo->dct_method) {
  320. #ifdef DCT_ISLOW_SUPPORTED
  321. case JDCT_ISLOW:
  322. fdct->pub.forward_DCT = forward_DCT;
  323. fdct->do_dct = jpeg_fdct_islow;
  324. break;
  325. #endif
  326. #ifdef DCT_IFAST_SUPPORTED
  327. case JDCT_IFAST:
  328. fdct->pub.forward_DCT = forward_DCT;
  329. fdct->do_dct = jpeg_fdct_ifast;
  330. break;
  331. #endif
  332. #ifdef DCT_FLOAT_SUPPORTED
  333. case JDCT_FLOAT:
  334. fdct->pub.forward_DCT = forward_DCT_float;
  335. fdct->do_float_dct = jpeg_fdct_float;
  336. break;
  337. #endif
  338. default:
  339. ERREXIT(cinfo, JERR_NOT_COMPILED);
  340. break;
  341. }
  342. /* Mark divisor tables unallocated */
  343. for (i = 0; i < NUM_QUANT_TBLS; i++) {
  344. fdct->divisors[i] = NULL;
  345. #ifdef DCT_FLOAT_SUPPORTED
  346. fdct->float_divisors[i] = NULL;
  347. #endif
  348. }
  349. }